Loading…

Predicting crop yields and soil‐plant nitrogen dynamics in the US Corn Belt

We used the Agricultural Production Systems sIMulator (APSIM) to predict and explain maize and soybean yields, phenology, and soil water and nitrogen (N) dynamics during the growing season in Iowa, USA. Historical, current and forecasted weather data were used to drive simulations, which were releas...

Full description

Saved in:
Bibliographic Details
Published in:Crop science 2020-03, Vol.60 (2), p.721-738
Main Authors: Archontoulis, Sotirios V., Castellano, Michael J., Licht, Mark A., Nichols, Virginia, Baum, Mitch, Huber, Isaiah, Martinez‐Feria, Rafael, Puntel, Laila, Ordóñez, Raziel A., Iqbal, Javed, Wright, Emily E., Dietzel, Ranae N., Helmers, Matt, Vanloocke, Andy, Liebman, Matt, Hatfield, Jerry L., Herzmann, Daryl, Córdova, S. Carolina, Edmonds, Patrick, Togliatti, Kaitlin, Kessler, Ashlyn, Danalatos, Gerasimos, Pasley, Heather, Pederson, Carl, Lamkey, Kendall R.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3509-beb66e8eb058f098e2a0e874d82794783f9fb5857633e0809ee6b16f2e180e303
cites cdi_FETCH-LOGICAL-c3509-beb66e8eb058f098e2a0e874d82794783f9fb5857633e0809ee6b16f2e180e303
container_end_page 738
container_issue 2
container_start_page 721
container_title Crop science
container_volume 60
creator Archontoulis, Sotirios V.
Castellano, Michael J.
Licht, Mark A.
Nichols, Virginia
Baum, Mitch
Huber, Isaiah
Martinez‐Feria, Rafael
Puntel, Laila
Ordóñez, Raziel A.
Iqbal, Javed
Wright, Emily E.
Dietzel, Ranae N.
Helmers, Matt
Vanloocke, Andy
Liebman, Matt
Hatfield, Jerry L.
Herzmann, Daryl
Córdova, S. Carolina
Edmonds, Patrick
Togliatti, Kaitlin
Kessler, Ashlyn
Danalatos, Gerasimos
Pasley, Heather
Pederson, Carl
Lamkey, Kendall R.
description We used the Agricultural Production Systems sIMulator (APSIM) to predict and explain maize and soybean yields, phenology, and soil water and nitrogen (N) dynamics during the growing season in Iowa, USA. Historical, current and forecasted weather data were used to drive simulations, which were released in public four weeks after planting. In this paper, we (1) describe the methodology used to perform forecasts; (2) evaluate model prediction accuracy against data collected from 10 locations over four years; and (3) identify inputs that are key in forecasting yields and soil N dynamics. We found that the predicted median yield at planting was a very good indicator of end‐of‐season yields (relative root mean square error [RRMSE] of ∼20%). For reference, the prediction at maturity, when all the weather was known, had a RRMSE of 14%. The good prediction at planting time was explained by the existence of shallow water tables, which decreased model sensitivity to unknown summer precipitation by 50–64%. Model initial conditions and management information accounted for one‐fourth of the variation in maize yield. End of season model evaluations indicated that the model simulated well crop phenology (R2 = 0.88), root depth (R2 = 0.83), biomass production (R2 = 0.93), grain yield (R2 = 0.90), plant N uptake (R2 = 0.87), soil moisture (R2 = 0.42), soil temperature (R2 = 0.93), soil nitrate (R2 = 0.77), and water table depth (R2 = 0.41). We concluded that model set‐up by the user (e.g. inclusion of water table), initial conditions, and early season measurements are very important for accurate predictions of soil water, N and crop yields in this environment.
doi_str_mv 10.1002/csc2.20039
format article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_csc2_20039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CSC220039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3509-beb66e8eb058f098e2a0e874d82794783f9fb5857633e0809ee6b16f2e180e303</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoWEc3PkHWQsebpGmTpRb_YERhHHBX2vRmjHTSkhSkOx_BZ_RJnHFcuzqb7xwOHyHnDOYMgF-aaPicAwh9QBKWCZlCLsUhSQAYS5kSr8fkJMZ3ACh0IRPy-BywdWZ0fk1N6Ac6OezaSGvf0ti77vvza-hqP1LvxtCv0dN28vXGmUidp-Mb0tWSln3w9Bq78ZQc2bqLePaXM7K6vXkp79PF091DebVIjZCg0wabPEeFDUhlQSvkNaAqslbxQmeFElbbRipZ5EIgKNCIecNyy5EpQAFiRi72u9vLMQa01RDcpg5TxaDaiah2IqpfEVuY7eEP1-H0D1mVy5LvOz9NgmAn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Predicting crop yields and soil‐plant nitrogen dynamics in the US Corn Belt</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Archontoulis, Sotirios V. ; Castellano, Michael J. ; Licht, Mark A. ; Nichols, Virginia ; Baum, Mitch ; Huber, Isaiah ; Martinez‐Feria, Rafael ; Puntel, Laila ; Ordóñez, Raziel A. ; Iqbal, Javed ; Wright, Emily E. ; Dietzel, Ranae N. ; Helmers, Matt ; Vanloocke, Andy ; Liebman, Matt ; Hatfield, Jerry L. ; Herzmann, Daryl ; Córdova, S. Carolina ; Edmonds, Patrick ; Togliatti, Kaitlin ; Kessler, Ashlyn ; Danalatos, Gerasimos ; Pasley, Heather ; Pederson, Carl ; Lamkey, Kendall R.</creator><creatorcontrib>Archontoulis, Sotirios V. ; Castellano, Michael J. ; Licht, Mark A. ; Nichols, Virginia ; Baum, Mitch ; Huber, Isaiah ; Martinez‐Feria, Rafael ; Puntel, Laila ; Ordóñez, Raziel A. ; Iqbal, Javed ; Wright, Emily E. ; Dietzel, Ranae N. ; Helmers, Matt ; Vanloocke, Andy ; Liebman, Matt ; Hatfield, Jerry L. ; Herzmann, Daryl ; Córdova, S. Carolina ; Edmonds, Patrick ; Togliatti, Kaitlin ; Kessler, Ashlyn ; Danalatos, Gerasimos ; Pasley, Heather ; Pederson, Carl ; Lamkey, Kendall R.</creatorcontrib><description>We used the Agricultural Production Systems sIMulator (APSIM) to predict and explain maize and soybean yields, phenology, and soil water and nitrogen (N) dynamics during the growing season in Iowa, USA. Historical, current and forecasted weather data were used to drive simulations, which were released in public four weeks after planting. In this paper, we (1) describe the methodology used to perform forecasts; (2) evaluate model prediction accuracy against data collected from 10 locations over four years; and (3) identify inputs that are key in forecasting yields and soil N dynamics. We found that the predicted median yield at planting was a very good indicator of end‐of‐season yields (relative root mean square error [RRMSE] of ∼20%). For reference, the prediction at maturity, when all the weather was known, had a RRMSE of 14%. The good prediction at planting time was explained by the existence of shallow water tables, which decreased model sensitivity to unknown summer precipitation by 50–64%. Model initial conditions and management information accounted for one‐fourth of the variation in maize yield. End of season model evaluations indicated that the model simulated well crop phenology (R2 = 0.88), root depth (R2 = 0.83), biomass production (R2 = 0.93), grain yield (R2 = 0.90), plant N uptake (R2 = 0.87), soil moisture (R2 = 0.42), soil temperature (R2 = 0.93), soil nitrate (R2 = 0.77), and water table depth (R2 = 0.41). We concluded that model set‐up by the user (e.g. inclusion of water table), initial conditions, and early season measurements are very important for accurate predictions of soil water, N and crop yields in this environment.</description><identifier>ISSN: 0011-183X</identifier><identifier>EISSN: 1435-0653</identifier><identifier>DOI: 10.1002/csc2.20039</identifier><language>eng</language><ispartof>Crop science, 2020-03, Vol.60 (2), p.721-738</ispartof><rights>2020 The Authors. published by Wiley Periodicals, Inc. on behalf of Crop Science Society of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3509-beb66e8eb058f098e2a0e874d82794783f9fb5857633e0809ee6b16f2e180e303</citedby><cites>FETCH-LOGICAL-c3509-beb66e8eb058f098e2a0e874d82794783f9fb5857633e0809ee6b16f2e180e303</cites><orcidid>0000-0001-8510-8798 ; 0000-0001-6640-7856 ; 0000-0001-7595-8107</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Archontoulis, Sotirios V.</creatorcontrib><creatorcontrib>Castellano, Michael J.</creatorcontrib><creatorcontrib>Licht, Mark A.</creatorcontrib><creatorcontrib>Nichols, Virginia</creatorcontrib><creatorcontrib>Baum, Mitch</creatorcontrib><creatorcontrib>Huber, Isaiah</creatorcontrib><creatorcontrib>Martinez‐Feria, Rafael</creatorcontrib><creatorcontrib>Puntel, Laila</creatorcontrib><creatorcontrib>Ordóñez, Raziel A.</creatorcontrib><creatorcontrib>Iqbal, Javed</creatorcontrib><creatorcontrib>Wright, Emily E.</creatorcontrib><creatorcontrib>Dietzel, Ranae N.</creatorcontrib><creatorcontrib>Helmers, Matt</creatorcontrib><creatorcontrib>Vanloocke, Andy</creatorcontrib><creatorcontrib>Liebman, Matt</creatorcontrib><creatorcontrib>Hatfield, Jerry L.</creatorcontrib><creatorcontrib>Herzmann, Daryl</creatorcontrib><creatorcontrib>Córdova, S. Carolina</creatorcontrib><creatorcontrib>Edmonds, Patrick</creatorcontrib><creatorcontrib>Togliatti, Kaitlin</creatorcontrib><creatorcontrib>Kessler, Ashlyn</creatorcontrib><creatorcontrib>Danalatos, Gerasimos</creatorcontrib><creatorcontrib>Pasley, Heather</creatorcontrib><creatorcontrib>Pederson, Carl</creatorcontrib><creatorcontrib>Lamkey, Kendall R.</creatorcontrib><title>Predicting crop yields and soil‐plant nitrogen dynamics in the US Corn Belt</title><title>Crop science</title><description>We used the Agricultural Production Systems sIMulator (APSIM) to predict and explain maize and soybean yields, phenology, and soil water and nitrogen (N) dynamics during the growing season in Iowa, USA. Historical, current and forecasted weather data were used to drive simulations, which were released in public four weeks after planting. In this paper, we (1) describe the methodology used to perform forecasts; (2) evaluate model prediction accuracy against data collected from 10 locations over four years; and (3) identify inputs that are key in forecasting yields and soil N dynamics. We found that the predicted median yield at planting was a very good indicator of end‐of‐season yields (relative root mean square error [RRMSE] of ∼20%). For reference, the prediction at maturity, when all the weather was known, had a RRMSE of 14%. The good prediction at planting time was explained by the existence of shallow water tables, which decreased model sensitivity to unknown summer precipitation by 50–64%. Model initial conditions and management information accounted for one‐fourth of the variation in maize yield. End of season model evaluations indicated that the model simulated well crop phenology (R2 = 0.88), root depth (R2 = 0.83), biomass production (R2 = 0.93), grain yield (R2 = 0.90), plant N uptake (R2 = 0.87), soil moisture (R2 = 0.42), soil temperature (R2 = 0.93), soil nitrate (R2 = 0.77), and water table depth (R2 = 0.41). We concluded that model set‐up by the user (e.g. inclusion of water table), initial conditions, and early season measurements are very important for accurate predictions of soil water, N and crop yields in this environment.</description><issn>0011-183X</issn><issn>1435-0653</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kM1KxDAUhYMoWEc3PkHWQsebpGmTpRb_YERhHHBX2vRmjHTSkhSkOx_BZ_RJnHFcuzqb7xwOHyHnDOYMgF-aaPicAwh9QBKWCZlCLsUhSQAYS5kSr8fkJMZ3ACh0IRPy-BywdWZ0fk1N6Ac6OezaSGvf0ti77vvza-hqP1LvxtCv0dN28vXGmUidp-Mb0tWSln3w9Bq78ZQc2bqLePaXM7K6vXkp79PF091DebVIjZCg0wabPEeFDUhlQSvkNaAqslbxQmeFElbbRipZ5EIgKNCIecNyy5EpQAFiRi72u9vLMQa01RDcpg5TxaDaiah2IqpfEVuY7eEP1-H0D1mVy5LvOz9NgmAn</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Archontoulis, Sotirios V.</creator><creator>Castellano, Michael J.</creator><creator>Licht, Mark A.</creator><creator>Nichols, Virginia</creator><creator>Baum, Mitch</creator><creator>Huber, Isaiah</creator><creator>Martinez‐Feria, Rafael</creator><creator>Puntel, Laila</creator><creator>Ordóñez, Raziel A.</creator><creator>Iqbal, Javed</creator><creator>Wright, Emily E.</creator><creator>Dietzel, Ranae N.</creator><creator>Helmers, Matt</creator><creator>Vanloocke, Andy</creator><creator>Liebman, Matt</creator><creator>Hatfield, Jerry L.</creator><creator>Herzmann, Daryl</creator><creator>Córdova, S. Carolina</creator><creator>Edmonds, Patrick</creator><creator>Togliatti, Kaitlin</creator><creator>Kessler, Ashlyn</creator><creator>Danalatos, Gerasimos</creator><creator>Pasley, Heather</creator><creator>Pederson, Carl</creator><creator>Lamkey, Kendall R.</creator><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8510-8798</orcidid><orcidid>https://orcid.org/0000-0001-6640-7856</orcidid><orcidid>https://orcid.org/0000-0001-7595-8107</orcidid></search><sort><creationdate>202003</creationdate><title>Predicting crop yields and soil‐plant nitrogen dynamics in the US Corn Belt</title><author>Archontoulis, Sotirios V. ; Castellano, Michael J. ; Licht, Mark A. ; Nichols, Virginia ; Baum, Mitch ; Huber, Isaiah ; Martinez‐Feria, Rafael ; Puntel, Laila ; Ordóñez, Raziel A. ; Iqbal, Javed ; Wright, Emily E. ; Dietzel, Ranae N. ; Helmers, Matt ; Vanloocke, Andy ; Liebman, Matt ; Hatfield, Jerry L. ; Herzmann, Daryl ; Córdova, S. Carolina ; Edmonds, Patrick ; Togliatti, Kaitlin ; Kessler, Ashlyn ; Danalatos, Gerasimos ; Pasley, Heather ; Pederson, Carl ; Lamkey, Kendall R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3509-beb66e8eb058f098e2a0e874d82794783f9fb5857633e0809ee6b16f2e180e303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Archontoulis, Sotirios V.</creatorcontrib><creatorcontrib>Castellano, Michael J.</creatorcontrib><creatorcontrib>Licht, Mark A.</creatorcontrib><creatorcontrib>Nichols, Virginia</creatorcontrib><creatorcontrib>Baum, Mitch</creatorcontrib><creatorcontrib>Huber, Isaiah</creatorcontrib><creatorcontrib>Martinez‐Feria, Rafael</creatorcontrib><creatorcontrib>Puntel, Laila</creatorcontrib><creatorcontrib>Ordóñez, Raziel A.</creatorcontrib><creatorcontrib>Iqbal, Javed</creatorcontrib><creatorcontrib>Wright, Emily E.</creatorcontrib><creatorcontrib>Dietzel, Ranae N.</creatorcontrib><creatorcontrib>Helmers, Matt</creatorcontrib><creatorcontrib>Vanloocke, Andy</creatorcontrib><creatorcontrib>Liebman, Matt</creatorcontrib><creatorcontrib>Hatfield, Jerry L.</creatorcontrib><creatorcontrib>Herzmann, Daryl</creatorcontrib><creatorcontrib>Córdova, S. Carolina</creatorcontrib><creatorcontrib>Edmonds, Patrick</creatorcontrib><creatorcontrib>Togliatti, Kaitlin</creatorcontrib><creatorcontrib>Kessler, Ashlyn</creatorcontrib><creatorcontrib>Danalatos, Gerasimos</creatorcontrib><creatorcontrib>Pasley, Heather</creatorcontrib><creatorcontrib>Pederson, Carl</creatorcontrib><creatorcontrib>Lamkey, Kendall R.</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley-Blackwell Backfiles (Open access)</collection><collection>CrossRef</collection><jtitle>Crop science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Archontoulis, Sotirios V.</au><au>Castellano, Michael J.</au><au>Licht, Mark A.</au><au>Nichols, Virginia</au><au>Baum, Mitch</au><au>Huber, Isaiah</au><au>Martinez‐Feria, Rafael</au><au>Puntel, Laila</au><au>Ordóñez, Raziel A.</au><au>Iqbal, Javed</au><au>Wright, Emily E.</au><au>Dietzel, Ranae N.</au><au>Helmers, Matt</au><au>Vanloocke, Andy</au><au>Liebman, Matt</au><au>Hatfield, Jerry L.</au><au>Herzmann, Daryl</au><au>Córdova, S. Carolina</au><au>Edmonds, Patrick</au><au>Togliatti, Kaitlin</au><au>Kessler, Ashlyn</au><au>Danalatos, Gerasimos</au><au>Pasley, Heather</au><au>Pederson, Carl</au><au>Lamkey, Kendall R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting crop yields and soil‐plant nitrogen dynamics in the US Corn Belt</atitle><jtitle>Crop science</jtitle><date>2020-03</date><risdate>2020</risdate><volume>60</volume><issue>2</issue><spage>721</spage><epage>738</epage><pages>721-738</pages><issn>0011-183X</issn><eissn>1435-0653</eissn><abstract>We used the Agricultural Production Systems sIMulator (APSIM) to predict and explain maize and soybean yields, phenology, and soil water and nitrogen (N) dynamics during the growing season in Iowa, USA. Historical, current and forecasted weather data were used to drive simulations, which were released in public four weeks after planting. In this paper, we (1) describe the methodology used to perform forecasts; (2) evaluate model prediction accuracy against data collected from 10 locations over four years; and (3) identify inputs that are key in forecasting yields and soil N dynamics. We found that the predicted median yield at planting was a very good indicator of end‐of‐season yields (relative root mean square error [RRMSE] of ∼20%). For reference, the prediction at maturity, when all the weather was known, had a RRMSE of 14%. The good prediction at planting time was explained by the existence of shallow water tables, which decreased model sensitivity to unknown summer precipitation by 50–64%. Model initial conditions and management information accounted for one‐fourth of the variation in maize yield. End of season model evaluations indicated that the model simulated well crop phenology (R2 = 0.88), root depth (R2 = 0.83), biomass production (R2 = 0.93), grain yield (R2 = 0.90), plant N uptake (R2 = 0.87), soil moisture (R2 = 0.42), soil temperature (R2 = 0.93), soil nitrate (R2 = 0.77), and water table depth (R2 = 0.41). We concluded that model set‐up by the user (e.g. inclusion of water table), initial conditions, and early season measurements are very important for accurate predictions of soil water, N and crop yields in this environment.</abstract><doi>10.1002/csc2.20039</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-8510-8798</orcidid><orcidid>https://orcid.org/0000-0001-6640-7856</orcidid><orcidid>https://orcid.org/0000-0001-7595-8107</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0011-183X
ispartof Crop science, 2020-03, Vol.60 (2), p.721-738
issn 0011-183X
1435-0653
language eng
recordid cdi_crossref_primary_10_1002_csc2_20039
source Wiley-Blackwell Read & Publish Collection
title Predicting crop yields and soil‐plant nitrogen dynamics in the US Corn Belt
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A53%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20crop%20yields%20and%20soil%E2%80%90plant%20nitrogen%20dynamics%20in%20the%20US%20Corn%20Belt&rft.jtitle=Crop%20science&rft.au=Archontoulis,%20Sotirios%20V.&rft.date=2020-03&rft.volume=60&rft.issue=2&rft.spage=721&rft.epage=738&rft.pages=721-738&rft.issn=0011-183X&rft.eissn=1435-0653&rft_id=info:doi/10.1002/csc2.20039&rft_dat=%3Cwiley_cross%3ECSC220039%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3509-beb66e8eb058f098e2a0e874d82794783f9fb5857633e0809ee6b16f2e180e303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true