Loading…
Predicting crop yields and soil‐plant nitrogen dynamics in the US Corn Belt
We used the Agricultural Production Systems sIMulator (APSIM) to predict and explain maize and soybean yields, phenology, and soil water and nitrogen (N) dynamics during the growing season in Iowa, USA. Historical, current and forecasted weather data were used to drive simulations, which were releas...
Saved in:
Published in: | Crop science 2020-03, Vol.60 (2), p.721-738 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3509-beb66e8eb058f098e2a0e874d82794783f9fb5857633e0809ee6b16f2e180e303 |
---|---|
cites | cdi_FETCH-LOGICAL-c3509-beb66e8eb058f098e2a0e874d82794783f9fb5857633e0809ee6b16f2e180e303 |
container_end_page | 738 |
container_issue | 2 |
container_start_page | 721 |
container_title | Crop science |
container_volume | 60 |
creator | Archontoulis, Sotirios V. Castellano, Michael J. Licht, Mark A. Nichols, Virginia Baum, Mitch Huber, Isaiah Martinez‐Feria, Rafael Puntel, Laila Ordóñez, Raziel A. Iqbal, Javed Wright, Emily E. Dietzel, Ranae N. Helmers, Matt Vanloocke, Andy Liebman, Matt Hatfield, Jerry L. Herzmann, Daryl Córdova, S. Carolina Edmonds, Patrick Togliatti, Kaitlin Kessler, Ashlyn Danalatos, Gerasimos Pasley, Heather Pederson, Carl Lamkey, Kendall R. |
description | We used the Agricultural Production Systems sIMulator (APSIM) to predict and explain maize and soybean yields, phenology, and soil water and nitrogen (N) dynamics during the growing season in Iowa, USA. Historical, current and forecasted weather data were used to drive simulations, which were released in public four weeks after planting. In this paper, we (1) describe the methodology used to perform forecasts; (2) evaluate model prediction accuracy against data collected from 10 locations over four years; and (3) identify inputs that are key in forecasting yields and soil N dynamics. We found that the predicted median yield at planting was a very good indicator of end‐of‐season yields (relative root mean square error [RRMSE] of ∼20%). For reference, the prediction at maturity, when all the weather was known, had a RRMSE of 14%. The good prediction at planting time was explained by the existence of shallow water tables, which decreased model sensitivity to unknown summer precipitation by 50–64%. Model initial conditions and management information accounted for one‐fourth of the variation in maize yield. End of season model evaluations indicated that the model simulated well crop phenology (R2 = 0.88), root depth (R2 = 0.83), biomass production (R2 = 0.93), grain yield (R2 = 0.90), plant N uptake (R2 = 0.87), soil moisture (R2 = 0.42), soil temperature (R2 = 0.93), soil nitrate (R2 = 0.77), and water table depth (R2 = 0.41). We concluded that model set‐up by the user (e.g. inclusion of water table), initial conditions, and early season measurements are very important for accurate predictions of soil water, N and crop yields in this environment. |
doi_str_mv | 10.1002/csc2.20039 |
format | article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_csc2_20039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CSC220039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3509-beb66e8eb058f098e2a0e874d82794783f9fb5857633e0809ee6b16f2e180e303</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoWEc3PkHWQsebpGmTpRb_YERhHHBX2vRmjHTSkhSkOx_BZ_RJnHFcuzqb7xwOHyHnDOYMgF-aaPicAwh9QBKWCZlCLsUhSQAYS5kSr8fkJMZ3ACh0IRPy-BywdWZ0fk1N6Ac6OezaSGvf0ti77vvza-hqP1LvxtCv0dN28vXGmUidp-Mb0tWSln3w9Bq78ZQc2bqLePaXM7K6vXkp79PF091DebVIjZCg0wabPEeFDUhlQSvkNaAqslbxQmeFElbbRipZ5EIgKNCIecNyy5EpQAFiRi72u9vLMQa01RDcpg5TxaDaiah2IqpfEVuY7eEP1-H0D1mVy5LvOz9NgmAn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Predicting crop yields and soil‐plant nitrogen dynamics in the US Corn Belt</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Archontoulis, Sotirios V. ; Castellano, Michael J. ; Licht, Mark A. ; Nichols, Virginia ; Baum, Mitch ; Huber, Isaiah ; Martinez‐Feria, Rafael ; Puntel, Laila ; Ordóñez, Raziel A. ; Iqbal, Javed ; Wright, Emily E. ; Dietzel, Ranae N. ; Helmers, Matt ; Vanloocke, Andy ; Liebman, Matt ; Hatfield, Jerry L. ; Herzmann, Daryl ; Córdova, S. Carolina ; Edmonds, Patrick ; Togliatti, Kaitlin ; Kessler, Ashlyn ; Danalatos, Gerasimos ; Pasley, Heather ; Pederson, Carl ; Lamkey, Kendall R.</creator><creatorcontrib>Archontoulis, Sotirios V. ; Castellano, Michael J. ; Licht, Mark A. ; Nichols, Virginia ; Baum, Mitch ; Huber, Isaiah ; Martinez‐Feria, Rafael ; Puntel, Laila ; Ordóñez, Raziel A. ; Iqbal, Javed ; Wright, Emily E. ; Dietzel, Ranae N. ; Helmers, Matt ; Vanloocke, Andy ; Liebman, Matt ; Hatfield, Jerry L. ; Herzmann, Daryl ; Córdova, S. Carolina ; Edmonds, Patrick ; Togliatti, Kaitlin ; Kessler, Ashlyn ; Danalatos, Gerasimos ; Pasley, Heather ; Pederson, Carl ; Lamkey, Kendall R.</creatorcontrib><description>We used the Agricultural Production Systems sIMulator (APSIM) to predict and explain maize and soybean yields, phenology, and soil water and nitrogen (N) dynamics during the growing season in Iowa, USA. Historical, current and forecasted weather data were used to drive simulations, which were released in public four weeks after planting. In this paper, we (1) describe the methodology used to perform forecasts; (2) evaluate model prediction accuracy against data collected from 10 locations over four years; and (3) identify inputs that are key in forecasting yields and soil N dynamics. We found that the predicted median yield at planting was a very good indicator of end‐of‐season yields (relative root mean square error [RRMSE] of ∼20%). For reference, the prediction at maturity, when all the weather was known, had a RRMSE of 14%. The good prediction at planting time was explained by the existence of shallow water tables, which decreased model sensitivity to unknown summer precipitation by 50–64%. Model initial conditions and management information accounted for one‐fourth of the variation in maize yield. End of season model evaluations indicated that the model simulated well crop phenology (R2 = 0.88), root depth (R2 = 0.83), biomass production (R2 = 0.93), grain yield (R2 = 0.90), plant N uptake (R2 = 0.87), soil moisture (R2 = 0.42), soil temperature (R2 = 0.93), soil nitrate (R2 = 0.77), and water table depth (R2 = 0.41). We concluded that model set‐up by the user (e.g. inclusion of water table), initial conditions, and early season measurements are very important for accurate predictions of soil water, N and crop yields in this environment.</description><identifier>ISSN: 0011-183X</identifier><identifier>EISSN: 1435-0653</identifier><identifier>DOI: 10.1002/csc2.20039</identifier><language>eng</language><ispartof>Crop science, 2020-03, Vol.60 (2), p.721-738</ispartof><rights>2020 The Authors. published by Wiley Periodicals, Inc. on behalf of Crop Science Society of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3509-beb66e8eb058f098e2a0e874d82794783f9fb5857633e0809ee6b16f2e180e303</citedby><cites>FETCH-LOGICAL-c3509-beb66e8eb058f098e2a0e874d82794783f9fb5857633e0809ee6b16f2e180e303</cites><orcidid>0000-0001-8510-8798 ; 0000-0001-6640-7856 ; 0000-0001-7595-8107</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Archontoulis, Sotirios V.</creatorcontrib><creatorcontrib>Castellano, Michael J.</creatorcontrib><creatorcontrib>Licht, Mark A.</creatorcontrib><creatorcontrib>Nichols, Virginia</creatorcontrib><creatorcontrib>Baum, Mitch</creatorcontrib><creatorcontrib>Huber, Isaiah</creatorcontrib><creatorcontrib>Martinez‐Feria, Rafael</creatorcontrib><creatorcontrib>Puntel, Laila</creatorcontrib><creatorcontrib>Ordóñez, Raziel A.</creatorcontrib><creatorcontrib>Iqbal, Javed</creatorcontrib><creatorcontrib>Wright, Emily E.</creatorcontrib><creatorcontrib>Dietzel, Ranae N.</creatorcontrib><creatorcontrib>Helmers, Matt</creatorcontrib><creatorcontrib>Vanloocke, Andy</creatorcontrib><creatorcontrib>Liebman, Matt</creatorcontrib><creatorcontrib>Hatfield, Jerry L.</creatorcontrib><creatorcontrib>Herzmann, Daryl</creatorcontrib><creatorcontrib>Córdova, S. Carolina</creatorcontrib><creatorcontrib>Edmonds, Patrick</creatorcontrib><creatorcontrib>Togliatti, Kaitlin</creatorcontrib><creatorcontrib>Kessler, Ashlyn</creatorcontrib><creatorcontrib>Danalatos, Gerasimos</creatorcontrib><creatorcontrib>Pasley, Heather</creatorcontrib><creatorcontrib>Pederson, Carl</creatorcontrib><creatorcontrib>Lamkey, Kendall R.</creatorcontrib><title>Predicting crop yields and soil‐plant nitrogen dynamics in the US Corn Belt</title><title>Crop science</title><description>We used the Agricultural Production Systems sIMulator (APSIM) to predict and explain maize and soybean yields, phenology, and soil water and nitrogen (N) dynamics during the growing season in Iowa, USA. Historical, current and forecasted weather data were used to drive simulations, which were released in public four weeks after planting. In this paper, we (1) describe the methodology used to perform forecasts; (2) evaluate model prediction accuracy against data collected from 10 locations over four years; and (3) identify inputs that are key in forecasting yields and soil N dynamics. We found that the predicted median yield at planting was a very good indicator of end‐of‐season yields (relative root mean square error [RRMSE] of ∼20%). For reference, the prediction at maturity, when all the weather was known, had a RRMSE of 14%. The good prediction at planting time was explained by the existence of shallow water tables, which decreased model sensitivity to unknown summer precipitation by 50–64%. Model initial conditions and management information accounted for one‐fourth of the variation in maize yield. End of season model evaluations indicated that the model simulated well crop phenology (R2 = 0.88), root depth (R2 = 0.83), biomass production (R2 = 0.93), grain yield (R2 = 0.90), plant N uptake (R2 = 0.87), soil moisture (R2 = 0.42), soil temperature (R2 = 0.93), soil nitrate (R2 = 0.77), and water table depth (R2 = 0.41). We concluded that model set‐up by the user (e.g. inclusion of water table), initial conditions, and early season measurements are very important for accurate predictions of soil water, N and crop yields in this environment.</description><issn>0011-183X</issn><issn>1435-0653</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kM1KxDAUhYMoWEc3PkHWQsebpGmTpRb_YERhHHBX2vRmjHTSkhSkOx_BZ_RJnHFcuzqb7xwOHyHnDOYMgF-aaPicAwh9QBKWCZlCLsUhSQAYS5kSr8fkJMZ3ACh0IRPy-BywdWZ0fk1N6Ac6OezaSGvf0ti77vvza-hqP1LvxtCv0dN28vXGmUidp-Mb0tWSln3w9Bq78ZQc2bqLePaXM7K6vXkp79PF091DebVIjZCg0wabPEeFDUhlQSvkNaAqslbxQmeFElbbRipZ5EIgKNCIecNyy5EpQAFiRi72u9vLMQa01RDcpg5TxaDaiah2IqpfEVuY7eEP1-H0D1mVy5LvOz9NgmAn</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Archontoulis, Sotirios V.</creator><creator>Castellano, Michael J.</creator><creator>Licht, Mark A.</creator><creator>Nichols, Virginia</creator><creator>Baum, Mitch</creator><creator>Huber, Isaiah</creator><creator>Martinez‐Feria, Rafael</creator><creator>Puntel, Laila</creator><creator>Ordóñez, Raziel A.</creator><creator>Iqbal, Javed</creator><creator>Wright, Emily E.</creator><creator>Dietzel, Ranae N.</creator><creator>Helmers, Matt</creator><creator>Vanloocke, Andy</creator><creator>Liebman, Matt</creator><creator>Hatfield, Jerry L.</creator><creator>Herzmann, Daryl</creator><creator>Córdova, S. Carolina</creator><creator>Edmonds, Patrick</creator><creator>Togliatti, Kaitlin</creator><creator>Kessler, Ashlyn</creator><creator>Danalatos, Gerasimos</creator><creator>Pasley, Heather</creator><creator>Pederson, Carl</creator><creator>Lamkey, Kendall R.</creator><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8510-8798</orcidid><orcidid>https://orcid.org/0000-0001-6640-7856</orcidid><orcidid>https://orcid.org/0000-0001-7595-8107</orcidid></search><sort><creationdate>202003</creationdate><title>Predicting crop yields and soil‐plant nitrogen dynamics in the US Corn Belt</title><author>Archontoulis, Sotirios V. ; Castellano, Michael J. ; Licht, Mark A. ; Nichols, Virginia ; Baum, Mitch ; Huber, Isaiah ; Martinez‐Feria, Rafael ; Puntel, Laila ; Ordóñez, Raziel A. ; Iqbal, Javed ; Wright, Emily E. ; Dietzel, Ranae N. ; Helmers, Matt ; Vanloocke, Andy ; Liebman, Matt ; Hatfield, Jerry L. ; Herzmann, Daryl ; Córdova, S. Carolina ; Edmonds, Patrick ; Togliatti, Kaitlin ; Kessler, Ashlyn ; Danalatos, Gerasimos ; Pasley, Heather ; Pederson, Carl ; Lamkey, Kendall R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3509-beb66e8eb058f098e2a0e874d82794783f9fb5857633e0809ee6b16f2e180e303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Archontoulis, Sotirios V.</creatorcontrib><creatorcontrib>Castellano, Michael J.</creatorcontrib><creatorcontrib>Licht, Mark A.</creatorcontrib><creatorcontrib>Nichols, Virginia</creatorcontrib><creatorcontrib>Baum, Mitch</creatorcontrib><creatorcontrib>Huber, Isaiah</creatorcontrib><creatorcontrib>Martinez‐Feria, Rafael</creatorcontrib><creatorcontrib>Puntel, Laila</creatorcontrib><creatorcontrib>Ordóñez, Raziel A.</creatorcontrib><creatorcontrib>Iqbal, Javed</creatorcontrib><creatorcontrib>Wright, Emily E.</creatorcontrib><creatorcontrib>Dietzel, Ranae N.</creatorcontrib><creatorcontrib>Helmers, Matt</creatorcontrib><creatorcontrib>Vanloocke, Andy</creatorcontrib><creatorcontrib>Liebman, Matt</creatorcontrib><creatorcontrib>Hatfield, Jerry L.</creatorcontrib><creatorcontrib>Herzmann, Daryl</creatorcontrib><creatorcontrib>Córdova, S. Carolina</creatorcontrib><creatorcontrib>Edmonds, Patrick</creatorcontrib><creatorcontrib>Togliatti, Kaitlin</creatorcontrib><creatorcontrib>Kessler, Ashlyn</creatorcontrib><creatorcontrib>Danalatos, Gerasimos</creatorcontrib><creatorcontrib>Pasley, Heather</creatorcontrib><creatorcontrib>Pederson, Carl</creatorcontrib><creatorcontrib>Lamkey, Kendall R.</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley-Blackwell Backfiles (Open access)</collection><collection>CrossRef</collection><jtitle>Crop science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Archontoulis, Sotirios V.</au><au>Castellano, Michael J.</au><au>Licht, Mark A.</au><au>Nichols, Virginia</au><au>Baum, Mitch</au><au>Huber, Isaiah</au><au>Martinez‐Feria, Rafael</au><au>Puntel, Laila</au><au>Ordóñez, Raziel A.</au><au>Iqbal, Javed</au><au>Wright, Emily E.</au><au>Dietzel, Ranae N.</au><au>Helmers, Matt</au><au>Vanloocke, Andy</au><au>Liebman, Matt</au><au>Hatfield, Jerry L.</au><au>Herzmann, Daryl</au><au>Córdova, S. Carolina</au><au>Edmonds, Patrick</au><au>Togliatti, Kaitlin</au><au>Kessler, Ashlyn</au><au>Danalatos, Gerasimos</au><au>Pasley, Heather</au><au>Pederson, Carl</au><au>Lamkey, Kendall R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting crop yields and soil‐plant nitrogen dynamics in the US Corn Belt</atitle><jtitle>Crop science</jtitle><date>2020-03</date><risdate>2020</risdate><volume>60</volume><issue>2</issue><spage>721</spage><epage>738</epage><pages>721-738</pages><issn>0011-183X</issn><eissn>1435-0653</eissn><abstract>We used the Agricultural Production Systems sIMulator (APSIM) to predict and explain maize and soybean yields, phenology, and soil water and nitrogen (N) dynamics during the growing season in Iowa, USA. Historical, current and forecasted weather data were used to drive simulations, which were released in public four weeks after planting. In this paper, we (1) describe the methodology used to perform forecasts; (2) evaluate model prediction accuracy against data collected from 10 locations over four years; and (3) identify inputs that are key in forecasting yields and soil N dynamics. We found that the predicted median yield at planting was a very good indicator of end‐of‐season yields (relative root mean square error [RRMSE] of ∼20%). For reference, the prediction at maturity, when all the weather was known, had a RRMSE of 14%. The good prediction at planting time was explained by the existence of shallow water tables, which decreased model sensitivity to unknown summer precipitation by 50–64%. Model initial conditions and management information accounted for one‐fourth of the variation in maize yield. End of season model evaluations indicated that the model simulated well crop phenology (R2 = 0.88), root depth (R2 = 0.83), biomass production (R2 = 0.93), grain yield (R2 = 0.90), plant N uptake (R2 = 0.87), soil moisture (R2 = 0.42), soil temperature (R2 = 0.93), soil nitrate (R2 = 0.77), and water table depth (R2 = 0.41). We concluded that model set‐up by the user (e.g. inclusion of water table), initial conditions, and early season measurements are very important for accurate predictions of soil water, N and crop yields in this environment.</abstract><doi>10.1002/csc2.20039</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-8510-8798</orcidid><orcidid>https://orcid.org/0000-0001-6640-7856</orcidid><orcidid>https://orcid.org/0000-0001-7595-8107</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0011-183X |
ispartof | Crop science, 2020-03, Vol.60 (2), p.721-738 |
issn | 0011-183X 1435-0653 |
language | eng |
recordid | cdi_crossref_primary_10_1002_csc2_20039 |
source | Wiley-Blackwell Read & Publish Collection |
title | Predicting crop yields and soil‐plant nitrogen dynamics in the US Corn Belt |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A53%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20crop%20yields%20and%20soil%E2%80%90plant%20nitrogen%20dynamics%20in%20the%20US%20Corn%20Belt&rft.jtitle=Crop%20science&rft.au=Archontoulis,%20Sotirios%20V.&rft.date=2020-03&rft.volume=60&rft.issue=2&rft.spage=721&rft.epage=738&rft.pages=721-738&rft.issn=0011-183X&rft.eissn=1435-0653&rft_id=info:doi/10.1002/csc2.20039&rft_dat=%3Cwiley_cross%3ECSC220039%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3509-beb66e8eb058f098e2a0e874d82794783f9fb5857633e0809ee6b16f2e180e303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |