Loading…
Scalable Synthesis of Microsized, Nanocrystalline Zn 0.9 Fe 0.1 O-C Secondary Particles and Their Use in Zn 0.9 Fe 0.1 O-C/LiNi 0.5 Mn 1.5 O 4 Lithium-Ion Full Cells
Conversion/alloying materials (CAMs) are a potential alternative to graphite as Li-ion anodes, especially for high-power performance. The so far most investigated CAM is carbon-coated Zn Fe O, which provides very high specific capacity of more than 900 mAh g and good rate capability. Especially for...
Saved in:
Published in: | ChemSusChem 2020-07, Vol.13 (13), p.3504-3513 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c1070-e21aa6afb5aa649131b3f4954993b93bb24520cd31734e5a29d033221ff8b0783 |
---|---|
cites | cdi_FETCH-LOGICAL-c1070-e21aa6afb5aa649131b3f4954993b93bb24520cd31734e5a29d033221ff8b0783 |
container_end_page | 3513 |
container_issue | 13 |
container_start_page | 3504 |
container_title | ChemSusChem |
container_volume | 13 |
creator | Asenbauer, Jakob Binder, Joachim R Mueller, Franziska Kuenzel, Matthias Geiger, Dorin Kaiser, Ute Passerini, Stefano Bresser, Dominic |
description | Conversion/alloying materials (CAMs) are a potential alternative to graphite as Li-ion anodes, especially for high-power performance. The so far most investigated CAM is carbon-coated Zn
Fe
O, which provides very high specific capacity of more than 900 mAh g
and good rate capability. Especially for the latter the optimal particle size is in the nanometer regime. However, this leads to limited electrode packing densities and safety issues in large-scale handling and processing. Herein, a new synthesis route including three spray-drying steps that results in the formation of microsized, spherical secondary particles is reported. The resulting particles with sizes of 10-15 μm are composed of carbon-coated Zn
Fe
O nanocrystals with an average diameter of approximately 30-40 nm. The carbon coating ensures fast electron transport in the secondary particles and, thus, high rate capability of the resulting electrodes. Coupling partially prelithiated, carbon-coated Zn
Fe
O anodes with LiNi
Mn
O
cathodes results in cobalt-free Li-ion cells delivering a specific energy of up to 284 Wh kg
(at 1 C rate) and power of 1105 W kg
(at 3 C) with remarkable energy efficiency (>93 % at 1 C and 91.8 % at 3 C). |
doi_str_mv | 10.1002/cssc.202000559 |
format | article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_cssc_202000559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32286730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1070-e21aa6afb5aa649131b3f4954993b93bb24520cd31734e5a29d033221ff8b0783</originalsourceid><addsrcrecordid>eNplkM9Kw0AQhxdRbK1ePco8gElnd_P3KMFqIW2FtiBewmazoSvbTcmmh_o-vqcp1V6EgW8G5jcwHyH3FH2KyMbSOekzZIgYhukFGdIkCrwwCt4vzz2nA3Lj3CdihGkUXZMBZyyJYo5D8r2UwojSKFgebLdRTjtoaphp2TZOf6nqEebCNrI9uE4Yo62CDwvopzBRPSgsvAyWSja2Eu0B3kTbaWmUA2ErWG2UbmHtFGj7PzbO9Vz3QwgzC7THAgLIdbfR-603bSxM9sZApoxxt-SqFsapu1-OyHryvMpevXzxMs2eck9SjNFTjAoRiboMewQp5bTkdZCGQZrysq-SBSFDWXEa80CFgqUV8t4FreukxDjhI-Kf7h6_d62qi12rt_1jBcXi6Ls4-i7OvvvAwymw25dbVZ3X_wTzH-f2dkw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Scalable Synthesis of Microsized, Nanocrystalline Zn 0.9 Fe 0.1 O-C Secondary Particles and Their Use in Zn 0.9 Fe 0.1 O-C/LiNi 0.5 Mn 1.5 O 4 Lithium-Ion Full Cells</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Asenbauer, Jakob ; Binder, Joachim R ; Mueller, Franziska ; Kuenzel, Matthias ; Geiger, Dorin ; Kaiser, Ute ; Passerini, Stefano ; Bresser, Dominic</creator><creatorcontrib>Asenbauer, Jakob ; Binder, Joachim R ; Mueller, Franziska ; Kuenzel, Matthias ; Geiger, Dorin ; Kaiser, Ute ; Passerini, Stefano ; Bresser, Dominic</creatorcontrib><description>Conversion/alloying materials (CAMs) are a potential alternative to graphite as Li-ion anodes, especially for high-power performance. The so far most investigated CAM is carbon-coated Zn
Fe
O, which provides very high specific capacity of more than 900 mAh g
and good rate capability. Especially for the latter the optimal particle size is in the nanometer regime. However, this leads to limited electrode packing densities and safety issues in large-scale handling and processing. Herein, a new synthesis route including three spray-drying steps that results in the formation of microsized, spherical secondary particles is reported. The resulting particles with sizes of 10-15 μm are composed of carbon-coated Zn
Fe
O nanocrystals with an average diameter of approximately 30-40 nm. The carbon coating ensures fast electron transport in the secondary particles and, thus, high rate capability of the resulting electrodes. Coupling partially prelithiated, carbon-coated Zn
Fe
O anodes with LiNi
Mn
O
cathodes results in cobalt-free Li-ion cells delivering a specific energy of up to 284 Wh kg
(at 1 C rate) and power of 1105 W kg
(at 3 C) with remarkable energy efficiency (>93 % at 1 C and 91.8 % at 3 C).</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.202000559</identifier><identifier>PMID: 32286730</identifier><language>eng</language><publisher>Germany</publisher><ispartof>ChemSusChem, 2020-07, Vol.13 (13), p.3504-3513</ispartof><rights>2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1070-e21aa6afb5aa649131b3f4954993b93bb24520cd31734e5a29d033221ff8b0783</citedby><cites>FETCH-LOGICAL-c1070-e21aa6afb5aa649131b3f4954993b93bb24520cd31734e5a29d033221ff8b0783</cites><orcidid>0000-0002-5877-7053 ; 0000-0001-6429-6048 ; 0000-0002-6606-5304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32286730$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Asenbauer, Jakob</creatorcontrib><creatorcontrib>Binder, Joachim R</creatorcontrib><creatorcontrib>Mueller, Franziska</creatorcontrib><creatorcontrib>Kuenzel, Matthias</creatorcontrib><creatorcontrib>Geiger, Dorin</creatorcontrib><creatorcontrib>Kaiser, Ute</creatorcontrib><creatorcontrib>Passerini, Stefano</creatorcontrib><creatorcontrib>Bresser, Dominic</creatorcontrib><title>Scalable Synthesis of Microsized, Nanocrystalline Zn 0.9 Fe 0.1 O-C Secondary Particles and Their Use in Zn 0.9 Fe 0.1 O-C/LiNi 0.5 Mn 1.5 O 4 Lithium-Ion Full Cells</title><title>ChemSusChem</title><addtitle>ChemSusChem</addtitle><description>Conversion/alloying materials (CAMs) are a potential alternative to graphite as Li-ion anodes, especially for high-power performance. The so far most investigated CAM is carbon-coated Zn
Fe
O, which provides very high specific capacity of more than 900 mAh g
and good rate capability. Especially for the latter the optimal particle size is in the nanometer regime. However, this leads to limited electrode packing densities and safety issues in large-scale handling and processing. Herein, a new synthesis route including three spray-drying steps that results in the formation of microsized, spherical secondary particles is reported. The resulting particles with sizes of 10-15 μm are composed of carbon-coated Zn
Fe
O nanocrystals with an average diameter of approximately 30-40 nm. The carbon coating ensures fast electron transport in the secondary particles and, thus, high rate capability of the resulting electrodes. Coupling partially prelithiated, carbon-coated Zn
Fe
O anodes with LiNi
Mn
O
cathodes results in cobalt-free Li-ion cells delivering a specific energy of up to 284 Wh kg
(at 1 C rate) and power of 1105 W kg
(at 3 C) with remarkable energy efficiency (>93 % at 1 C and 91.8 % at 3 C).</description><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNplkM9Kw0AQhxdRbK1ePco8gElnd_P3KMFqIW2FtiBewmazoSvbTcmmh_o-vqcp1V6EgW8G5jcwHyH3FH2KyMbSOekzZIgYhukFGdIkCrwwCt4vzz2nA3Lj3CdihGkUXZMBZyyJYo5D8r2UwojSKFgebLdRTjtoaphp2TZOf6nqEebCNrI9uE4Yo62CDwvopzBRPSgsvAyWSja2Eu0B3kTbaWmUA2ErWG2UbmHtFGj7PzbO9Vz3QwgzC7THAgLIdbfR-603bSxM9sZApoxxt-SqFsapu1-OyHryvMpevXzxMs2eck9SjNFTjAoRiboMewQp5bTkdZCGQZrysq-SBSFDWXEa80CFgqUV8t4FreukxDjhI-Kf7h6_d62qi12rt_1jBcXi6Ls4-i7OvvvAwymw25dbVZ3X_wTzH-f2dkw</recordid><startdate>20200707</startdate><enddate>20200707</enddate><creator>Asenbauer, Jakob</creator><creator>Binder, Joachim R</creator><creator>Mueller, Franziska</creator><creator>Kuenzel, Matthias</creator><creator>Geiger, Dorin</creator><creator>Kaiser, Ute</creator><creator>Passerini, Stefano</creator><creator>Bresser, Dominic</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5877-7053</orcidid><orcidid>https://orcid.org/0000-0001-6429-6048</orcidid><orcidid>https://orcid.org/0000-0002-6606-5304</orcidid></search><sort><creationdate>20200707</creationdate><title>Scalable Synthesis of Microsized, Nanocrystalline Zn 0.9 Fe 0.1 O-C Secondary Particles and Their Use in Zn 0.9 Fe 0.1 O-C/LiNi 0.5 Mn 1.5 O 4 Lithium-Ion Full Cells</title><author>Asenbauer, Jakob ; Binder, Joachim R ; Mueller, Franziska ; Kuenzel, Matthias ; Geiger, Dorin ; Kaiser, Ute ; Passerini, Stefano ; Bresser, Dominic</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1070-e21aa6afb5aa649131b3f4954993b93bb24520cd31734e5a29d033221ff8b0783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asenbauer, Jakob</creatorcontrib><creatorcontrib>Binder, Joachim R</creatorcontrib><creatorcontrib>Mueller, Franziska</creatorcontrib><creatorcontrib>Kuenzel, Matthias</creatorcontrib><creatorcontrib>Geiger, Dorin</creatorcontrib><creatorcontrib>Kaiser, Ute</creatorcontrib><creatorcontrib>Passerini, Stefano</creatorcontrib><creatorcontrib>Bresser, Dominic</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asenbauer, Jakob</au><au>Binder, Joachim R</au><au>Mueller, Franziska</au><au>Kuenzel, Matthias</au><au>Geiger, Dorin</au><au>Kaiser, Ute</au><au>Passerini, Stefano</au><au>Bresser, Dominic</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalable Synthesis of Microsized, Nanocrystalline Zn 0.9 Fe 0.1 O-C Secondary Particles and Their Use in Zn 0.9 Fe 0.1 O-C/LiNi 0.5 Mn 1.5 O 4 Lithium-Ion Full Cells</atitle><jtitle>ChemSusChem</jtitle><addtitle>ChemSusChem</addtitle><date>2020-07-07</date><risdate>2020</risdate><volume>13</volume><issue>13</issue><spage>3504</spage><epage>3513</epage><pages>3504-3513</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>Conversion/alloying materials (CAMs) are a potential alternative to graphite as Li-ion anodes, especially for high-power performance. The so far most investigated CAM is carbon-coated Zn
Fe
O, which provides very high specific capacity of more than 900 mAh g
and good rate capability. Especially for the latter the optimal particle size is in the nanometer regime. However, this leads to limited electrode packing densities and safety issues in large-scale handling and processing. Herein, a new synthesis route including three spray-drying steps that results in the formation of microsized, spherical secondary particles is reported. The resulting particles with sizes of 10-15 μm are composed of carbon-coated Zn
Fe
O nanocrystals with an average diameter of approximately 30-40 nm. The carbon coating ensures fast electron transport in the secondary particles and, thus, high rate capability of the resulting electrodes. Coupling partially prelithiated, carbon-coated Zn
Fe
O anodes with LiNi
Mn
O
cathodes results in cobalt-free Li-ion cells delivering a specific energy of up to 284 Wh kg
(at 1 C rate) and power of 1105 W kg
(at 3 C) with remarkable energy efficiency (>93 % at 1 C and 91.8 % at 3 C).</abstract><cop>Germany</cop><pmid>32286730</pmid><doi>10.1002/cssc.202000559</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5877-7053</orcidid><orcidid>https://orcid.org/0000-0001-6429-6048</orcidid><orcidid>https://orcid.org/0000-0002-6606-5304</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1864-5631 |
ispartof | ChemSusChem, 2020-07, Vol.13 (13), p.3504-3513 |
issn | 1864-5631 1864-564X |
language | eng |
recordid | cdi_crossref_primary_10_1002_cssc_202000559 |
source | Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list) |
title | Scalable Synthesis of Microsized, Nanocrystalline Zn 0.9 Fe 0.1 O-C Secondary Particles and Their Use in Zn 0.9 Fe 0.1 O-C/LiNi 0.5 Mn 1.5 O 4 Lithium-Ion Full Cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A32%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalable%20Synthesis%20of%20Microsized,%20Nanocrystalline%20Zn%200.9%20Fe%200.1%20O-C%20Secondary%20Particles%20and%20Their%20Use%20in%20Zn%200.9%20Fe%200.1%20O-C/LiNi%200.5%20Mn%201.5%20O%204%20Lithium-Ion%20Full%20Cells&rft.jtitle=ChemSusChem&rft.au=Asenbauer,%20Jakob&rft.date=2020-07-07&rft.volume=13&rft.issue=13&rft.spage=3504&rft.epage=3513&rft.pages=3504-3513&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.202000559&rft_dat=%3Cpubmed_cross%3E32286730%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1070-e21aa6afb5aa649131b3f4954993b93bb24520cd31734e5a29d033221ff8b0783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/32286730&rfr_iscdi=true |