Loading…

Noncirculating current series resonant converter with pulse frequency modulation

In this paper, an asymmetric pulse frequency modulation (APFM) is applied to the full‐bridge series resonant converter with a secondary LC resonant tank. Different from the traditional PFM, the upper and lower switches have complementary gate drivers and the lower switches have constant on time of h...

Full description

Saved in:
Bibliographic Details
Published in:International journal of circuit theory and applications 2024-08
Main Authors: Ning, Guangfu, Du, Litao, Dai, Ben, Su, Mei, Xiong, Wenjing, Xu, Jingtao, Xu, Guo
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c118t-321df3ff0a6cb5bd8b19beb13c1a1b36fd70b26a156e1877e929cca3b734f4163
container_end_page
container_issue
container_start_page
container_title International journal of circuit theory and applications
container_volume
creator Ning, Guangfu
Du, Litao
Dai, Ben
Su, Mei
Xiong, Wenjing
Xu, Jingtao
Xu, Guo
description In this paper, an asymmetric pulse frequency modulation (APFM) is applied to the full‐bridge series resonant converter with a secondary LC resonant tank. Different from the traditional PFM, the upper and lower switches have complementary gate drivers and the lower switches have constant on time of half‐resonant period in this paper. Thanks to the resonant tank moved to the secondary side with the adopted APFM, the maximum magnetic flux density B m of a high‐frequency transformer (HFT) is only concerned with the fixed resonant frequency rather than the variable switching frequency. Hence, the switching frequency can be widely regulated, as well as the voltage gain. Furthermore, the circulating current flowing back to the input voltage source in the traditional LC series resonant converter can be eliminated by the APFM, leading to a low resonant current peak value. The operation principles and characteristics of the adopted method are analyzed in detail. Finally, a 500 W/70–120 V to 300 V/21–180 kHz prototype is built, and the experimental results verified the theoretical analysis well.
doi_str_mv 10.1002/cta.4206
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_cta_4206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_cta_4206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c118t-321df3ff0a6cb5bd8b19beb13c1a1b36fd70b26a156e1877e929cca3b734f4163</originalsourceid><addsrcrecordid>eNotkM1KxDAURoMoWEfBR8jSTcd7m06aLGXwDwZ1oeCuJOmNVmbSMUmVeXs76urj8MFZHMbOEeYIUF26bOZ1BfKAFQi6KQGa10NWAGhVaqXkMTtJ6QMAVCV0wZ4ehuD66Ma1yX14426MkULmiWJPiUdKQzATuyF8UcwU-Xef3_l2XCfiPtLnSMHt-Gbofg1DOGVH3kzn2f_O2MvN9fPyrlw93t4vr1alQ1S5FBV2XngPRjq7sJ2yqC1ZFA4NWiF914CtpMGFJFRNQ7rSzhlhG1H7GqWYsYs_r4tDSpF8u439xsRdi9DuS7RTiXZfQvwAcqxT3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Noncirculating current series resonant converter with pulse frequency modulation</title><source>Wiley</source><creator>Ning, Guangfu ; Du, Litao ; Dai, Ben ; Su, Mei ; Xiong, Wenjing ; Xu, Jingtao ; Xu, Guo</creator><creatorcontrib>Ning, Guangfu ; Du, Litao ; Dai, Ben ; Su, Mei ; Xiong, Wenjing ; Xu, Jingtao ; Xu, Guo</creatorcontrib><description>In this paper, an asymmetric pulse frequency modulation (APFM) is applied to the full‐bridge series resonant converter with a secondary LC resonant tank. Different from the traditional PFM, the upper and lower switches have complementary gate drivers and the lower switches have constant on time of half‐resonant period in this paper. Thanks to the resonant tank moved to the secondary side with the adopted APFM, the maximum magnetic flux density B m of a high‐frequency transformer (HFT) is only concerned with the fixed resonant frequency rather than the variable switching frequency. Hence, the switching frequency can be widely regulated, as well as the voltage gain. Furthermore, the circulating current flowing back to the input voltage source in the traditional LC series resonant converter can be eliminated by the APFM, leading to a low resonant current peak value. The operation principles and characteristics of the adopted method are analyzed in detail. Finally, a 500 W/70–120 V to 300 V/21–180 kHz prototype is built, and the experimental results verified the theoretical analysis well.</description><identifier>ISSN: 0098-9886</identifier><identifier>EISSN: 1097-007X</identifier><identifier>DOI: 10.1002/cta.4206</identifier><language>eng</language><ispartof>International journal of circuit theory and applications, 2024-08</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c118t-321df3ff0a6cb5bd8b19beb13c1a1b36fd70b26a156e1877e929cca3b734f4163</cites><orcidid>0000-0003-1706-2622</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ning, Guangfu</creatorcontrib><creatorcontrib>Du, Litao</creatorcontrib><creatorcontrib>Dai, Ben</creatorcontrib><creatorcontrib>Su, Mei</creatorcontrib><creatorcontrib>Xiong, Wenjing</creatorcontrib><creatorcontrib>Xu, Jingtao</creatorcontrib><creatorcontrib>Xu, Guo</creatorcontrib><title>Noncirculating current series resonant converter with pulse frequency modulation</title><title>International journal of circuit theory and applications</title><description>In this paper, an asymmetric pulse frequency modulation (APFM) is applied to the full‐bridge series resonant converter with a secondary LC resonant tank. Different from the traditional PFM, the upper and lower switches have complementary gate drivers and the lower switches have constant on time of half‐resonant period in this paper. Thanks to the resonant tank moved to the secondary side with the adopted APFM, the maximum magnetic flux density B m of a high‐frequency transformer (HFT) is only concerned with the fixed resonant frequency rather than the variable switching frequency. Hence, the switching frequency can be widely regulated, as well as the voltage gain. Furthermore, the circulating current flowing back to the input voltage source in the traditional LC series resonant converter can be eliminated by the APFM, leading to a low resonant current peak value. The operation principles and characteristics of the adopted method are analyzed in detail. Finally, a 500 W/70–120 V to 300 V/21–180 kHz prototype is built, and the experimental results verified the theoretical analysis well.</description><issn>0098-9886</issn><issn>1097-007X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkM1KxDAURoMoWEfBR8jSTcd7m06aLGXwDwZ1oeCuJOmNVmbSMUmVeXs76urj8MFZHMbOEeYIUF26bOZ1BfKAFQi6KQGa10NWAGhVaqXkMTtJ6QMAVCV0wZ4ehuD66Ma1yX14426MkULmiWJPiUdKQzATuyF8UcwU-Xef3_l2XCfiPtLnSMHt-Gbofg1DOGVH3kzn2f_O2MvN9fPyrlw93t4vr1alQ1S5FBV2XngPRjq7sJ2yqC1ZFA4NWiF914CtpMGFJFRNQ7rSzhlhG1H7GqWYsYs_r4tDSpF8u439xsRdi9DuS7RTiXZfQvwAcqxT3g</recordid><startdate>20240807</startdate><enddate>20240807</enddate><creator>Ning, Guangfu</creator><creator>Du, Litao</creator><creator>Dai, Ben</creator><creator>Su, Mei</creator><creator>Xiong, Wenjing</creator><creator>Xu, Jingtao</creator><creator>Xu, Guo</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1706-2622</orcidid></search><sort><creationdate>20240807</creationdate><title>Noncirculating current series resonant converter with pulse frequency modulation</title><author>Ning, Guangfu ; Du, Litao ; Dai, Ben ; Su, Mei ; Xiong, Wenjing ; Xu, Jingtao ; Xu, Guo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c118t-321df3ff0a6cb5bd8b19beb13c1a1b36fd70b26a156e1877e929cca3b734f4163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ning, Guangfu</creatorcontrib><creatorcontrib>Du, Litao</creatorcontrib><creatorcontrib>Dai, Ben</creatorcontrib><creatorcontrib>Su, Mei</creatorcontrib><creatorcontrib>Xiong, Wenjing</creatorcontrib><creatorcontrib>Xu, Jingtao</creatorcontrib><creatorcontrib>Xu, Guo</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of circuit theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ning, Guangfu</au><au>Du, Litao</au><au>Dai, Ben</au><au>Su, Mei</au><au>Xiong, Wenjing</au><au>Xu, Jingtao</au><au>Xu, Guo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noncirculating current series resonant converter with pulse frequency modulation</atitle><jtitle>International journal of circuit theory and applications</jtitle><date>2024-08-07</date><risdate>2024</risdate><issn>0098-9886</issn><eissn>1097-007X</eissn><abstract>In this paper, an asymmetric pulse frequency modulation (APFM) is applied to the full‐bridge series resonant converter with a secondary LC resonant tank. Different from the traditional PFM, the upper and lower switches have complementary gate drivers and the lower switches have constant on time of half‐resonant period in this paper. Thanks to the resonant tank moved to the secondary side with the adopted APFM, the maximum magnetic flux density B m of a high‐frequency transformer (HFT) is only concerned with the fixed resonant frequency rather than the variable switching frequency. Hence, the switching frequency can be widely regulated, as well as the voltage gain. Furthermore, the circulating current flowing back to the input voltage source in the traditional LC series resonant converter can be eliminated by the APFM, leading to a low resonant current peak value. The operation principles and characteristics of the adopted method are analyzed in detail. Finally, a 500 W/70–120 V to 300 V/21–180 kHz prototype is built, and the experimental results verified the theoretical analysis well.</abstract><doi>10.1002/cta.4206</doi><orcidid>https://orcid.org/0000-0003-1706-2622</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0098-9886
ispartof International journal of circuit theory and applications, 2024-08
issn 0098-9886
1097-007X
language eng
recordid cdi_crossref_primary_10_1002_cta_4206
source Wiley
title Noncirculating current series resonant converter with pulse frequency modulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A32%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noncirculating%20current%20series%20resonant%20converter%20with%20pulse%20frequency%20modulation&rft.jtitle=International%20journal%20of%20circuit%20theory%20and%20applications&rft.au=Ning,%20Guangfu&rft.date=2024-08-07&rft.issn=0098-9886&rft.eissn=1097-007X&rft_id=info:doi/10.1002/cta.4206&rft_dat=%3Ccrossref%3E10_1002_cta_4206%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c118t-321df3ff0a6cb5bd8b19beb13c1a1b36fd70b26a156e1877e929cca3b734f4163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true