Loading…

In vitro permeation of diclofenac sodium from novel microemulsion formulations through rabbit skin

In order to increase topical penetration of the nonsteroidal anti‐inflammatory drug, diclofenac sodium, new microemulsion formulations were prepared to increase drug solubility and in vitro penetration of the drug. The influence of dimethyl sulfoxide and propylene glycol were also investigated as en...

Full description

Saved in:
Bibliographic Details
Published in:Drug development research 2005-05, Vol.65 (1), p.17-25
Main Authors: Kantarcı, Gülten, Özgüney, Işık, Karasulu, Hatice Y., Güneri, Tamer, Başdemir, Gülçin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In order to increase topical penetration of the nonsteroidal anti‐inflammatory drug, diclofenac sodium, new microemulsion formulations were prepared to increase drug solubility and in vitro penetration of the drug. The influence of dimethyl sulfoxide and propylene glycol were also investigated as enhancers on the in vitro penetration of diclofenac sodium using Franz diffusion cells using excised dorsal rabbit skin. Factorial randomized design was performed to analyze the results of in vitro permeation studies. Microemulsions prepared with isopropyl alcohol were superior to those prepared with propanol. Enhancers had different effects depending on the formulation. Propylene glycol was superior to dimethyl sulfoxide when incorporated into isopropyl alcohol microemulsion, whereas dimethyl sulfoxide was superior to propylene glycol in propanol microemulsions. There were no observable histopathological differences between the skin of the control group and the treated groups at the light microscope level due to swelling of the skin tissue. The present study shows that microemulsion formulations containing isopropyl alcohol as co‐surfactant and propylene glycol as enhancer represent a promising approach for a topical vehicle for diclofenac sodium. Drug Dev. Res. 65:17–25, 2005. © 2005 Wiley‐Liss, Inc.
ISSN:0272-4391
1098-2299
DOI:10.1002/ddr.20003