Loading…

A novel POZ/zinc finger protein, champignon, interferes with gastrulation movements in Xenopus

We have cloned a novel krüppel‐like transcription factor of Xenopus that encodes POZ/zinc finger protein by expression cloning. Overexpression of mRNA resulted in interference with gastrulation. Because the injected embryo looks like a mushroom in appearance at the neurula stage, we have named this...

Full description

Saved in:
Bibliographic Details
Published in:Developmental dynamics 2001-05, Vol.221 (1), p.14-25
Main Authors: Goto, Toshiyasu, Hasegawa, Kouichi, Kinoshita, Tsutomu, Kubota, Hiroshi Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have cloned a novel krüppel‐like transcription factor of Xenopus that encodes POZ/zinc finger protein by expression cloning. Overexpression of mRNA resulted in interference with gastrulation. Because the injected embryo looks like a mushroom in appearance at the neurula stage, we have named this gene champignon (cpg). In cpg‐injected embryos, the blastopore appeared normally, but regressed thereafter. The injected embryos then elongated along the primary dorsoventral axis during the tailbud stage. Histologic sections and reverse transcription‐polymerase chain reaction analysis showed that cpg had no effect on the cell differentiation. The animal pole region of cpg‐injected embryos was thick during the gastrula stage, and mesodermal cells remained in the marginal zone. Furthermore, neither Keller‐sandwich explants nor activin‐treated animal cap explants excised from cpg‐injected embryos elongated. These results suggest that cpg acts as a potent inhibitor of cell migration and cell intercalation during gastrulation. © 2001 Wiley‐Liss, Inc.
ISSN:1058-8388
1097-0177
DOI:10.1002/dvdy.1121