Loading…
Brazil's worst mining disaster: Corporations must be compelled to pay the actual environmental costs
In November 2015, a large mine-tailing dam owned by Samarco Corporation collapsed in Brazil, generating a massive wave of toxic mud that spread down the Doce River, killing 20 people and affecting biodiversity across hundreds of kilometers of river, riparian lands, and Atlantic coast. Besides the di...
Saved in:
Published in: | Ecological applications 2017-01, Vol.27 (1), p.5-9 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In November 2015, a large mine-tailing dam owned by Samarco Corporation collapsed in Brazil, generating a massive wave of toxic mud that spread down the Doce River, killing 20 people and affecting biodiversity across hundreds of kilometers of river, riparian lands, and Atlantic coast. Besides the disaster's serious human and socioeconomic tolls, we estimate the regional loss of environmental services to be ~USS521 million per year. Although our estimate is conservative, it is still six times higher than the fine imposed on Samarco by Brazilian environmental authorities. To reduce such disparities between estimated damages and levied fines, we advocate for an environmental bond policy that considers potential risks and environmental services that could possibly be impacted by irresponsible mining activity. Environmental bonds and insurance are commonly used policy instruments in many countries, but there are no clear environmental bond policies in Brazil. Environmental bonds are likely to be more effective at securing environmental restitution than post-disaster fines, which generally are inadequate and often unpaid. We estimate that at least 126 mining dams in Brazil are vulnerable to failure in the forthcoming years. Any such event could have severe socialenvironmental consequences, underscoring the need for effective disaster-management strategies for large-scale mining operations. |
---|---|
ISSN: | 1051-0761 1939-5582 |
DOI: | 10.1002/eap.1461 |