Loading…
A General and Facile One-Step Synthesis of Imido-Titanium(IV) Complexes: Application to the Synthesis of Compounds Containing Functionalized or Chiral Imido Ligands and Bimetallic Diimido Architectures
One‐pot reactions of Ti(NMe2)4 with a wide range of primary alkyl, aryl, and silylamines RNH2 in the presence of excess chlorotrimethylsilane produced the corresponding imido–titanium(IV) complexes [Ti(=NR)Cl2(NHMe2)2] (1a–j), in which R = tBu, 1‐adamantane, Ph3C, Ph3Si, Ph, 2,6‐iPr2–C6H3, 2,6‐Cl2–C...
Saved in:
Published in: | European Journal of Inorganic Chemistry 2006-11, Vol.2006 (22), p.4503-4518 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | One‐pot reactions of Ti(NMe2)4 with a wide range of primary alkyl, aryl, and silylamines RNH2 in the presence of excess chlorotrimethylsilane produced the corresponding imido–titanium(IV) complexes [Ti(=NR)Cl2(NHMe2)2] (1a–j), in which R = tBu, 1‐adamantane, Ph3C, Ph3Si, Ph, 2,6‐iPr2–C6H3, 2,6‐Cl2–C6H3, 2,6‐Br2–4‐Me–C6H2, C6F5, and 3,5‐(F3C)2–C6H3. This general synthesis, which starts from commercially available reagents, represents a simple and direct route to imido complexes. Reaction of complexes 1 with pyridine afforded the six‐coordinate tris‐pyridine adducts [Ti(=NR)Cl2(Py)3] (2). Another advantage of this method is its tolerance to other functional groups; complexes that contain halides, ether, dialkylamino, cyano, ethynyl, olefin, and nitro substituents on the imido moiety have been prepared. The use of enantiomerically pure primary amines affords the first group of titanium complexes that contain chiral imido groups, and the use of diamines produces diimido complexes. Alternatively, CH3I has been used as an alkylating agent to generate titanium–imido complexes of the type [Ti(NR)I2(THF)2]2. All compounds were fully characterized by spectroscopic methods (IR, 1H NMR, 13C NMR) and elemental analysis. Some of the compounds were also analyzed by single‐crystal X‐ray diffraction studies. (© Wiley‐VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006) |
---|---|
ISSN: | 1434-1948 1099-0682 |
DOI: | 10.1002/ejic.200600475 |