Loading…

Myoglobin-Clay Electrode for Nitric Oxide (NO) Detection in Solution

Sodium montmorillonite was prepared via a colloidal chemical approach and deposited onto glassy carbon electrodes (GCE). Myoglobin was immobilized on the clay membrane modified electrode by spontaneous adsorption. Characterization of the myoglobin/clay/glassy carbon electrode (Mb/clay/GCE) showed a...

Full description

Saved in:
Bibliographic Details
Published in:Electroanalysis (New York, N.Y.) N.Y.), 2004-03, Vol.16 (4), p.253-259
Main Authors: Kröning, Steffen, Scheller, Frieder W., Wollenberger, Ulla, Lisdat, Fred
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sodium montmorillonite was prepared via a colloidal chemical approach and deposited onto glassy carbon electrodes (GCE). Myoglobin was immobilized on the clay membrane modified electrode by spontaneous adsorption. Characterization of the myoglobin/clay/glassy carbon electrode (Mb/clay/GCE) showed a quasi‐reversible, electrochemical redox behavior of the adsorbed protein with a formal potential of −0.380±0.010 V (vs. Ag/AgCl). The heterogeneous electron transfer rate constant was found to be strongly influenced by the buffer concentration. The Mb/clay/GCE was stable for several days in solution. The interaction of the immobilized Mb with nitric oxide (NO) is characterized by coordination chemistry. The reaction was found to be reversible and could be applied for NO detection in the nanomolar concentration range by a voltammetric analysis. In addition a mixed protein electrode with co‐immmobilized myoglobin (Mb) and cytochrome c (Cyt.c) was developed. By choice of the electrode potential both proteins can be addressed independently.
ISSN:1040-0397
1521-4109
DOI:10.1002/elan.200402780