Loading…

Photoinitiated miniemulsion polymerization in microfluidic chips on automated liquid handling stations: Proof of concept

Photoinitiated polymerization is usually applied in the area of specialty chemicals and UV curing but can also be employed in the production of biofunctional polymers and nanocapsules. A promising approach for the preparation of those polymers is the photoinitiated polymerization of miniemulsions. H...

Full description

Saved in:
Bibliographic Details
Published in:Engineering in life sciences 2016-09, Vol.16 (6), p.505-514
Main Authors: Radtke, Carsten Philipp, Delbé, Michèle, Wörner, Michael, Hubbuch, Jürgen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3588-94d46da4b2dd5e9a2927ef7a3681c2a74b9cc84d648744c6444ca7d2793525d3
cites cdi_FETCH-LOGICAL-c3588-94d46da4b2dd5e9a2927ef7a3681c2a74b9cc84d648744c6444ca7d2793525d3
container_end_page 514
container_issue 6
container_start_page 505
container_title Engineering in life sciences
container_volume 16
creator Radtke, Carsten Philipp
Delbé, Michèle
Wörner, Michael
Hubbuch, Jürgen
description Photoinitiated polymerization is usually applied in the area of specialty chemicals and UV curing but can also be employed in the production of biofunctional polymers and nanocapsules. A promising approach for the preparation of those polymers is the photoinitiated polymerization of miniemulsions. Here, the mild reaction conditions are beneficial for the integration of sensitive biomaterials into the process. The optimal combination of different varied cause variables like irradiance, irradiation time, and height of the irradiated volume is crucial for an appropriate polymerization result. For the presented proof of concept study, a microfluidic tool was established to screen these cause variables in an automated high throughput manner on a liquid handling station (LHS). The experiments are planned and executed by means of a design of experiments (DoE) approach to investigate the effect of the variables on the residual monomer content (RMC) within the stated design space. As the RMC is considered as crucial for bioapplications, the optimal parameter combinations for the complete monomer conversion have been determined. The model‐based evaluation of the executed experiments resulted a channel height respectively optical path of 200–400 μm, an irradiance of 65% (equals 44.2 mW/cm²) and an irradiation time of 30 s for complete styrene conversion.
doi_str_mv 10.1002/elsc.201500186
format article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_elsc_201500186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_B023XF8J_6</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3588-94d46da4b2dd5e9a2927ef7a3681c2a74b9cc84d648744c6444ca7d2793525d3</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKe3XvcPdOarSeqdjm0qQwcO9C5kSeqibVObDjd_vdkHuxUO54P3PIfDC8A1ggMEIb6xZdADDFEGIRLsBPQQQyLFgpHTQw8xhefgIoTPuMKFQD2wni19513tOqc6a5IqtrZalcH5Oml8uals635Vtx1dHWXd-qJcOeN0opeuCUkU1Krz1Q4v3XfUkqWqTenqjyR0OzTcJrPW-yKJoX2tbdNdgrNClcFeHWofzMej-fAhnb5MHod301STTIg0p4Yyo-gCG5PZXOEcc1twRZhAGitOF7nWghpGBadUMxqT4gbznGQ4M6QPBvuz8e8QWlvIpnWVajcSQbm1TW5tk0fbIkD2wI8r7eafbTmavg6FEJFK95QLnV0fKdV-ScYJz-Tb80TeQ0zex-JJMvIHXGSC8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Photoinitiated miniemulsion polymerization in microfluidic chips on automated liquid handling stations: Proof of concept</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Radtke, Carsten Philipp ; Delbé, Michèle ; Wörner, Michael ; Hubbuch, Jürgen</creator><creatorcontrib>Radtke, Carsten Philipp ; Delbé, Michèle ; Wörner, Michael ; Hubbuch, Jürgen</creatorcontrib><description>Photoinitiated polymerization is usually applied in the area of specialty chemicals and UV curing but can also be employed in the production of biofunctional polymers and nanocapsules. A promising approach for the preparation of those polymers is the photoinitiated polymerization of miniemulsions. Here, the mild reaction conditions are beneficial for the integration of sensitive biomaterials into the process. The optimal combination of different varied cause variables like irradiance, irradiation time, and height of the irradiated volume is crucial for an appropriate polymerization result. For the presented proof of concept study, a microfluidic tool was established to screen these cause variables in an automated high throughput manner on a liquid handling station (LHS). The experiments are planned and executed by means of a design of experiments (DoE) approach to investigate the effect of the variables on the residual monomer content (RMC) within the stated design space. As the RMC is considered as crucial for bioapplications, the optimal parameter combinations for the complete monomer conversion have been determined. The model‐based evaluation of the executed experiments resulted a channel height respectively optical path of 200–400 μm, an irradiance of 65% (equals 44.2 mW/cm²) and an irradiation time of 30 s for complete styrene conversion.</description><identifier>ISSN: 1618-0240</identifier><identifier>EISSN: 1618-2863</identifier><identifier>DOI: 10.1002/elsc.201500186</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>DoE ; Liquid handling station ; Microfluidics ; Miniemulsion ; Photopolymerization</subject><ispartof>Engineering in life sciences, 2016-09, Vol.16 (6), p.505-514</ispartof><rights>2016 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3588-94d46da4b2dd5e9a2927ef7a3681c2a74b9cc84d648744c6444ca7d2793525d3</citedby><cites>FETCH-LOGICAL-c3588-94d46da4b2dd5e9a2927ef7a3681c2a74b9cc84d648744c6444ca7d2793525d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Radtke, Carsten Philipp</creatorcontrib><creatorcontrib>Delbé, Michèle</creatorcontrib><creatorcontrib>Wörner, Michael</creatorcontrib><creatorcontrib>Hubbuch, Jürgen</creatorcontrib><title>Photoinitiated miniemulsion polymerization in microfluidic chips on automated liquid handling stations: Proof of concept</title><title>Engineering in life sciences</title><addtitle>Eng. Life Sci</addtitle><description>Photoinitiated polymerization is usually applied in the area of specialty chemicals and UV curing but can also be employed in the production of biofunctional polymers and nanocapsules. A promising approach for the preparation of those polymers is the photoinitiated polymerization of miniemulsions. Here, the mild reaction conditions are beneficial for the integration of sensitive biomaterials into the process. The optimal combination of different varied cause variables like irradiance, irradiation time, and height of the irradiated volume is crucial for an appropriate polymerization result. For the presented proof of concept study, a microfluidic tool was established to screen these cause variables in an automated high throughput manner on a liquid handling station (LHS). The experiments are planned and executed by means of a design of experiments (DoE) approach to investigate the effect of the variables on the residual monomer content (RMC) within the stated design space. As the RMC is considered as crucial for bioapplications, the optimal parameter combinations for the complete monomer conversion have been determined. The model‐based evaluation of the executed experiments resulted a channel height respectively optical path of 200–400 μm, an irradiance of 65% (equals 44.2 mW/cm²) and an irradiation time of 30 s for complete styrene conversion.</description><subject>DoE</subject><subject>Liquid handling station</subject><subject>Microfluidics</subject><subject>Miniemulsion</subject><subject>Photopolymerization</subject><issn>1618-0240</issn><issn>1618-2863</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkF1LwzAUhoMoOKe3XvcPdOarSeqdjm0qQwcO9C5kSeqibVObDjd_vdkHuxUO54P3PIfDC8A1ggMEIb6xZdADDFEGIRLsBPQQQyLFgpHTQw8xhefgIoTPuMKFQD2wni19513tOqc6a5IqtrZalcH5Oml8uals635Vtx1dHWXd-qJcOeN0opeuCUkU1Krz1Q4v3XfUkqWqTenqjyR0OzTcJrPW-yKJoX2tbdNdgrNClcFeHWofzMej-fAhnb5MHod301STTIg0p4Yyo-gCG5PZXOEcc1twRZhAGitOF7nWghpGBadUMxqT4gbznGQ4M6QPBvuz8e8QWlvIpnWVajcSQbm1TW5tk0fbIkD2wI8r7eafbTmavg6FEJFK95QLnV0fKdV-ScYJz-Tb80TeQ0zex-JJMvIHXGSC8g</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Radtke, Carsten Philipp</creator><creator>Delbé, Michèle</creator><creator>Wörner, Michael</creator><creator>Hubbuch, Jürgen</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201609</creationdate><title>Photoinitiated miniemulsion polymerization in microfluidic chips on automated liquid handling stations: Proof of concept</title><author>Radtke, Carsten Philipp ; Delbé, Michèle ; Wörner, Michael ; Hubbuch, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3588-94d46da4b2dd5e9a2927ef7a3681c2a74b9cc84d648744c6444ca7d2793525d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>DoE</topic><topic>Liquid handling station</topic><topic>Microfluidics</topic><topic>Miniemulsion</topic><topic>Photopolymerization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Radtke, Carsten Philipp</creatorcontrib><creatorcontrib>Delbé, Michèle</creatorcontrib><creatorcontrib>Wörner, Michael</creatorcontrib><creatorcontrib>Hubbuch, Jürgen</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Engineering in life sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Radtke, Carsten Philipp</au><au>Delbé, Michèle</au><au>Wörner, Michael</au><au>Hubbuch, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoinitiated miniemulsion polymerization in microfluidic chips on automated liquid handling stations: Proof of concept</atitle><jtitle>Engineering in life sciences</jtitle><addtitle>Eng. Life Sci</addtitle><date>2016-09</date><risdate>2016</risdate><volume>16</volume><issue>6</issue><spage>505</spage><epage>514</epage><pages>505-514</pages><issn>1618-0240</issn><eissn>1618-2863</eissn><abstract>Photoinitiated polymerization is usually applied in the area of specialty chemicals and UV curing but can also be employed in the production of biofunctional polymers and nanocapsules. A promising approach for the preparation of those polymers is the photoinitiated polymerization of miniemulsions. Here, the mild reaction conditions are beneficial for the integration of sensitive biomaterials into the process. The optimal combination of different varied cause variables like irradiance, irradiation time, and height of the irradiated volume is crucial for an appropriate polymerization result. For the presented proof of concept study, a microfluidic tool was established to screen these cause variables in an automated high throughput manner on a liquid handling station (LHS). The experiments are planned and executed by means of a design of experiments (DoE) approach to investigate the effect of the variables on the residual monomer content (RMC) within the stated design space. As the RMC is considered as crucial for bioapplications, the optimal parameter combinations for the complete monomer conversion have been determined. The model‐based evaluation of the executed experiments resulted a channel height respectively optical path of 200–400 μm, an irradiance of 65% (equals 44.2 mW/cm²) and an irradiation time of 30 s for complete styrene conversion.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1002/elsc.201500186</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1618-0240
ispartof Engineering in life sciences, 2016-09, Vol.16 (6), p.505-514
issn 1618-0240
1618-2863
language eng
recordid cdi_crossref_primary_10_1002_elsc_201500186
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects DoE
Liquid handling station
Microfluidics
Miniemulsion
Photopolymerization
title Photoinitiated miniemulsion polymerization in microfluidic chips on automated liquid handling stations: Proof of concept
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A34%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoinitiated%20miniemulsion%20polymerization%20in%20microfluidic%20chips%20on%20automated%20liquid%20handling%20stations:%20Proof%20of%20concept&rft.jtitle=Engineering%20in%20life%20sciences&rft.au=Radtke,%20Carsten%20Philipp&rft.date=2016-09&rft.volume=16&rft.issue=6&rft.spage=505&rft.epage=514&rft.pages=505-514&rft.issn=1618-0240&rft.eissn=1618-2863&rft_id=info:doi/10.1002/elsc.201500186&rft_dat=%3Cistex_cross%3Eark_67375_WNG_B023XF8J_6%3C/istex_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3588-94d46da4b2dd5e9a2927ef7a3681c2a74b9cc84d648744c6444ca7d2793525d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true