Loading…
Photoinitiated miniemulsion polymerization in microfluidic chips on automated liquid handling stations: Proof of concept
Photoinitiated polymerization is usually applied in the area of specialty chemicals and UV curing but can also be employed in the production of biofunctional polymers and nanocapsules. A promising approach for the preparation of those polymers is the photoinitiated polymerization of miniemulsions. H...
Saved in:
Published in: | Engineering in life sciences 2016-09, Vol.16 (6), p.505-514 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3588-94d46da4b2dd5e9a2927ef7a3681c2a74b9cc84d648744c6444ca7d2793525d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3588-94d46da4b2dd5e9a2927ef7a3681c2a74b9cc84d648744c6444ca7d2793525d3 |
container_end_page | 514 |
container_issue | 6 |
container_start_page | 505 |
container_title | Engineering in life sciences |
container_volume | 16 |
creator | Radtke, Carsten Philipp Delbé, Michèle Wörner, Michael Hubbuch, Jürgen |
description | Photoinitiated polymerization is usually applied in the area of specialty chemicals and UV curing but can also be employed in the production of biofunctional polymers and nanocapsules. A promising approach for the preparation of those polymers is the photoinitiated polymerization of miniemulsions. Here, the mild reaction conditions are beneficial for the integration of sensitive biomaterials into the process. The optimal combination of different varied cause variables like irradiance, irradiation time, and height of the irradiated volume is crucial for an appropriate polymerization result. For the presented proof of concept study, a microfluidic tool was established to screen these cause variables in an automated high throughput manner on a liquid handling station (LHS). The experiments are planned and executed by means of a design of experiments (DoE) approach to investigate the effect of the variables on the residual monomer content (RMC) within the stated design space. As the RMC is considered as crucial for bioapplications, the optimal parameter combinations for the complete monomer conversion have been determined. The model‐based evaluation of the executed experiments resulted a channel height respectively optical path of 200–400 μm, an irradiance of 65% (equals 44.2 mW/cm²) and an irradiation time of 30 s for complete styrene conversion. |
doi_str_mv | 10.1002/elsc.201500186 |
format | article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_elsc_201500186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_B023XF8J_6</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3588-94d46da4b2dd5e9a2927ef7a3681c2a74b9cc84d648744c6444ca7d2793525d3</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKe3XvcPdOarSeqdjm0qQwcO9C5kSeqibVObDjd_vdkHuxUO54P3PIfDC8A1ggMEIb6xZdADDFEGIRLsBPQQQyLFgpHTQw8xhefgIoTPuMKFQD2wni19513tOqc6a5IqtrZalcH5Oml8uals635Vtx1dHWXd-qJcOeN0opeuCUkU1Krz1Q4v3XfUkqWqTenqjyR0OzTcJrPW-yKJoX2tbdNdgrNClcFeHWofzMej-fAhnb5MHod301STTIg0p4Yyo-gCG5PZXOEcc1twRZhAGitOF7nWghpGBadUMxqT4gbznGQ4M6QPBvuz8e8QWlvIpnWVajcSQbm1TW5tk0fbIkD2wI8r7eafbTmavg6FEJFK95QLnV0fKdV-ScYJz-Tb80TeQ0zex-JJMvIHXGSC8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Photoinitiated miniemulsion polymerization in microfluidic chips on automated liquid handling stations: Proof of concept</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Radtke, Carsten Philipp ; Delbé, Michèle ; Wörner, Michael ; Hubbuch, Jürgen</creator><creatorcontrib>Radtke, Carsten Philipp ; Delbé, Michèle ; Wörner, Michael ; Hubbuch, Jürgen</creatorcontrib><description>Photoinitiated polymerization is usually applied in the area of specialty chemicals and UV curing but can also be employed in the production of biofunctional polymers and nanocapsules. A promising approach for the preparation of those polymers is the photoinitiated polymerization of miniemulsions. Here, the mild reaction conditions are beneficial for the integration of sensitive biomaterials into the process. The optimal combination of different varied cause variables like irradiance, irradiation time, and height of the irradiated volume is crucial for an appropriate polymerization result. For the presented proof of concept study, a microfluidic tool was established to screen these cause variables in an automated high throughput manner on a liquid handling station (LHS). The experiments are planned and executed by means of a design of experiments (DoE) approach to investigate the effect of the variables on the residual monomer content (RMC) within the stated design space. As the RMC is considered as crucial for bioapplications, the optimal parameter combinations for the complete monomer conversion have been determined. The model‐based evaluation of the executed experiments resulted a channel height respectively optical path of 200–400 μm, an irradiance of 65% (equals 44.2 mW/cm²) and an irradiation time of 30 s for complete styrene conversion.</description><identifier>ISSN: 1618-0240</identifier><identifier>EISSN: 1618-2863</identifier><identifier>DOI: 10.1002/elsc.201500186</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>DoE ; Liquid handling station ; Microfluidics ; Miniemulsion ; Photopolymerization</subject><ispartof>Engineering in life sciences, 2016-09, Vol.16 (6), p.505-514</ispartof><rights>2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3588-94d46da4b2dd5e9a2927ef7a3681c2a74b9cc84d648744c6444ca7d2793525d3</citedby><cites>FETCH-LOGICAL-c3588-94d46da4b2dd5e9a2927ef7a3681c2a74b9cc84d648744c6444ca7d2793525d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Radtke, Carsten Philipp</creatorcontrib><creatorcontrib>Delbé, Michèle</creatorcontrib><creatorcontrib>Wörner, Michael</creatorcontrib><creatorcontrib>Hubbuch, Jürgen</creatorcontrib><title>Photoinitiated miniemulsion polymerization in microfluidic chips on automated liquid handling stations: Proof of concept</title><title>Engineering in life sciences</title><addtitle>Eng. Life Sci</addtitle><description>Photoinitiated polymerization is usually applied in the area of specialty chemicals and UV curing but can also be employed in the production of biofunctional polymers and nanocapsules. A promising approach for the preparation of those polymers is the photoinitiated polymerization of miniemulsions. Here, the mild reaction conditions are beneficial for the integration of sensitive biomaterials into the process. The optimal combination of different varied cause variables like irradiance, irradiation time, and height of the irradiated volume is crucial for an appropriate polymerization result. For the presented proof of concept study, a microfluidic tool was established to screen these cause variables in an automated high throughput manner on a liquid handling station (LHS). The experiments are planned and executed by means of a design of experiments (DoE) approach to investigate the effect of the variables on the residual monomer content (RMC) within the stated design space. As the RMC is considered as crucial for bioapplications, the optimal parameter combinations for the complete monomer conversion have been determined. The model‐based evaluation of the executed experiments resulted a channel height respectively optical path of 200–400 μm, an irradiance of 65% (equals 44.2 mW/cm²) and an irradiation time of 30 s for complete styrene conversion.</description><subject>DoE</subject><subject>Liquid handling station</subject><subject>Microfluidics</subject><subject>Miniemulsion</subject><subject>Photopolymerization</subject><issn>1618-0240</issn><issn>1618-2863</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkF1LwzAUhoMoOKe3XvcPdOarSeqdjm0qQwcO9C5kSeqibVObDjd_vdkHuxUO54P3PIfDC8A1ggMEIb6xZdADDFEGIRLsBPQQQyLFgpHTQw8xhefgIoTPuMKFQD2wni19513tOqc6a5IqtrZalcH5Oml8uals635Vtx1dHWXd-qJcOeN0opeuCUkU1Krz1Q4v3XfUkqWqTenqjyR0OzTcJrPW-yKJoX2tbdNdgrNClcFeHWofzMej-fAhnb5MHod301STTIg0p4Yyo-gCG5PZXOEcc1twRZhAGitOF7nWghpGBadUMxqT4gbznGQ4M6QPBvuz8e8QWlvIpnWVajcSQbm1TW5tk0fbIkD2wI8r7eafbTmavg6FEJFK95QLnV0fKdV-ScYJz-Tb80TeQ0zex-JJMvIHXGSC8g</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Radtke, Carsten Philipp</creator><creator>Delbé, Michèle</creator><creator>Wörner, Michael</creator><creator>Hubbuch, Jürgen</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201609</creationdate><title>Photoinitiated miniemulsion polymerization in microfluidic chips on automated liquid handling stations: Proof of concept</title><author>Radtke, Carsten Philipp ; Delbé, Michèle ; Wörner, Michael ; Hubbuch, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3588-94d46da4b2dd5e9a2927ef7a3681c2a74b9cc84d648744c6444ca7d2793525d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>DoE</topic><topic>Liquid handling station</topic><topic>Microfluidics</topic><topic>Miniemulsion</topic><topic>Photopolymerization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Radtke, Carsten Philipp</creatorcontrib><creatorcontrib>Delbé, Michèle</creatorcontrib><creatorcontrib>Wörner, Michael</creatorcontrib><creatorcontrib>Hubbuch, Jürgen</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Engineering in life sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Radtke, Carsten Philipp</au><au>Delbé, Michèle</au><au>Wörner, Michael</au><au>Hubbuch, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoinitiated miniemulsion polymerization in microfluidic chips on automated liquid handling stations: Proof of concept</atitle><jtitle>Engineering in life sciences</jtitle><addtitle>Eng. Life Sci</addtitle><date>2016-09</date><risdate>2016</risdate><volume>16</volume><issue>6</issue><spage>505</spage><epage>514</epage><pages>505-514</pages><issn>1618-0240</issn><eissn>1618-2863</eissn><abstract>Photoinitiated polymerization is usually applied in the area of specialty chemicals and UV curing but can also be employed in the production of biofunctional polymers and nanocapsules. A promising approach for the preparation of those polymers is the photoinitiated polymerization of miniemulsions. Here, the mild reaction conditions are beneficial for the integration of sensitive biomaterials into the process. The optimal combination of different varied cause variables like irradiance, irradiation time, and height of the irradiated volume is crucial for an appropriate polymerization result. For the presented proof of concept study, a microfluidic tool was established to screen these cause variables in an automated high throughput manner on a liquid handling station (LHS). The experiments are planned and executed by means of a design of experiments (DoE) approach to investigate the effect of the variables on the residual monomer content (RMC) within the stated design space. As the RMC is considered as crucial for bioapplications, the optimal parameter combinations for the complete monomer conversion have been determined. The model‐based evaluation of the executed experiments resulted a channel height respectively optical path of 200–400 μm, an irradiance of 65% (equals 44.2 mW/cm²) and an irradiation time of 30 s for complete styrene conversion.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1002/elsc.201500186</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1618-0240 |
ispartof | Engineering in life sciences, 2016-09, Vol.16 (6), p.505-514 |
issn | 1618-0240 1618-2863 |
language | eng |
recordid | cdi_crossref_primary_10_1002_elsc_201500186 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | DoE Liquid handling station Microfluidics Miniemulsion Photopolymerization |
title | Photoinitiated miniemulsion polymerization in microfluidic chips on automated liquid handling stations: Proof of concept |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A34%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoinitiated%20miniemulsion%20polymerization%20in%20microfluidic%20chips%20on%20automated%20liquid%20handling%20stations:%20Proof%20of%20concept&rft.jtitle=Engineering%20in%20life%20sciences&rft.au=Radtke,%20Carsten%20Philipp&rft.date=2016-09&rft.volume=16&rft.issue=6&rft.spage=505&rft.epage=514&rft.pages=505-514&rft.issn=1618-0240&rft.eissn=1618-2863&rft_id=info:doi/10.1002/elsc.201500186&rft_dat=%3Cistex_cross%3Eark_67375_WNG_B023XF8J_6%3C/istex_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3588-94d46da4b2dd5e9a2927ef7a3681c2a74b9cc84d648744c6444ca7d2793525d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |