Loading…
Fast parameter estimation of generalized extreme value distribution using neural networks
The heavy‐tailed behavior of the generalized extreme‐value distribution makes it a popular choice for modeling extreme events such as floods, droughts, heatwaves, wildfires and so forth. However, estimating the distribution's parameters using conventional maximum likelihood methods can be compu...
Saved in:
Published in: | Environmetrics (London, Ont.) Ont.), 2024-05, Vol.35 (3), p.n/a |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2265-2776e55836cc43a875a75d8e507994bfe864cd143c788654102ec8a7351d11953 |
container_end_page | n/a |
container_issue | 3 |
container_start_page | |
container_title | Environmetrics (London, Ont.) |
container_volume | 35 |
creator | Rai, Sweta Hoffman, Alexis Lahiri, Soumendra Nychka, Douglas W. Sain, Stephan R. Bandyopadhyay, Soutir |
description | The heavy‐tailed behavior of the generalized extreme‐value distribution makes it a popular choice for modeling extreme events such as floods, droughts, heatwaves, wildfires and so forth. However, estimating the distribution's parameters using conventional maximum likelihood methods can be computationally intensive, even for moderate‐sized datasets. To overcome this limitation, we propose a computationally efficient, likelihood‐free estimation method utilizing a neural network. Through an extensive simulation study, we demonstrate that the proposed neural network‐based method provides generalized extreme value distribution parameter estimates with comparable accuracy to the conventional maximum likelihood method but with a significant computational speedup. To account for estimation uncertainty, we utilize parametric bootstrapping, which is inherent in the trained network. Finally, we apply this method to 1000‐year annual maximum temperature data from the Community Climate System Model version 3 across North America for three atmospheric concentrations: 289 ppm CO2$$ {\mathrm{CO}}_2 $$ (pre‐industrial), 700 ppm CO2$$ {\mathrm{CO}}_2 $$ (future conditions), and 1400 ppm CO2$$ {\mathrm{CO}}_2 $$, and compare the results with those obtained using the maximum likelihood approach. |
doi_str_mv | 10.1002/env.2845 |
format | article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_env_2845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ENV2845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2265-2776e55836cc43a875a75d8e507994bfe864cd143c788654102ec8a7351d11953</originalsourceid><addsrcrecordid>eNp10M1KAzEUBeAgCtYq-AhZupmaZJJJspTSqlB0o6KrIc3cKdH5KUmmtT69aevW1TmLjwv3IHRNyYQSwm6h20yY4uIEjSjROiNavJ-mThXJOCH6HF2E8ElSK4QcoY-5CRGvjTctRPAYQnStia7vcF_jFXTgTeN-oMLwHT20gDemGQBXLkTvlsNBDsF1K9zBkGyKuO39V7hEZ7VpAlz95Ri9zmcv04ds8Xz_OL1bZJaxQmRMygKEUHlhLc-NksJIUSkQRGrNlzWogtuK8txKpQrBKWFglZG5oBWlWuRjdHO8a30fgoe6XPv0gt-VlJT7Sco0SbmfJNHsSLeugd2_rpw9vR38L2rUY5M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fast parameter estimation of generalized extreme value distribution using neural networks</title><source>Wiley</source><creator>Rai, Sweta ; Hoffman, Alexis ; Lahiri, Soumendra ; Nychka, Douglas W. ; Sain, Stephan R. ; Bandyopadhyay, Soutir</creator><creatorcontrib>Rai, Sweta ; Hoffman, Alexis ; Lahiri, Soumendra ; Nychka, Douglas W. ; Sain, Stephan R. ; Bandyopadhyay, Soutir</creatorcontrib><description>The heavy‐tailed behavior of the generalized extreme‐value distribution makes it a popular choice for modeling extreme events such as floods, droughts, heatwaves, wildfires and so forth. However, estimating the distribution's parameters using conventional maximum likelihood methods can be computationally intensive, even for moderate‐sized datasets. To overcome this limitation, we propose a computationally efficient, likelihood‐free estimation method utilizing a neural network. Through an extensive simulation study, we demonstrate that the proposed neural network‐based method provides generalized extreme value distribution parameter estimates with comparable accuracy to the conventional maximum likelihood method but with a significant computational speedup. To account for estimation uncertainty, we utilize parametric bootstrapping, which is inherent in the trained network. Finally, we apply this method to 1000‐year annual maximum temperature data from the Community Climate System Model version 3 across North America for three atmospheric concentrations: 289 ppm CO2$$ {\mathrm{CO}}_2 $$ (pre‐industrial), 700 ppm CO2$$ {\mathrm{CO}}_2 $$ (future conditions), and 1400 ppm CO2$$ {\mathrm{CO}}_2 $$, and compare the results with those obtained using the maximum likelihood approach.</description><identifier>ISSN: 1180-4009</identifier><identifier>EISSN: 1099-095X</identifier><identifier>DOI: 10.1002/env.2845</identifier><language>eng</language><subject>deep neural networks ; extreme quantiles ; generalized extreme value distribution ; parameter estimation ; sufficient statistics</subject><ispartof>Environmetrics (London, Ont.), 2024-05, Vol.35 (3), p.n/a</ispartof><rights>2024 John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2265-2776e55836cc43a875a75d8e507994bfe864cd143c788654102ec8a7351d11953</cites><orcidid>0000-0003-2213-3333</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rai, Sweta</creatorcontrib><creatorcontrib>Hoffman, Alexis</creatorcontrib><creatorcontrib>Lahiri, Soumendra</creatorcontrib><creatorcontrib>Nychka, Douglas W.</creatorcontrib><creatorcontrib>Sain, Stephan R.</creatorcontrib><creatorcontrib>Bandyopadhyay, Soutir</creatorcontrib><title>Fast parameter estimation of generalized extreme value distribution using neural networks</title><title>Environmetrics (London, Ont.)</title><description>The heavy‐tailed behavior of the generalized extreme‐value distribution makes it a popular choice for modeling extreme events such as floods, droughts, heatwaves, wildfires and so forth. However, estimating the distribution's parameters using conventional maximum likelihood methods can be computationally intensive, even for moderate‐sized datasets. To overcome this limitation, we propose a computationally efficient, likelihood‐free estimation method utilizing a neural network. Through an extensive simulation study, we demonstrate that the proposed neural network‐based method provides generalized extreme value distribution parameter estimates with comparable accuracy to the conventional maximum likelihood method but with a significant computational speedup. To account for estimation uncertainty, we utilize parametric bootstrapping, which is inherent in the trained network. Finally, we apply this method to 1000‐year annual maximum temperature data from the Community Climate System Model version 3 across North America for three atmospheric concentrations: 289 ppm CO2$$ {\mathrm{CO}}_2 $$ (pre‐industrial), 700 ppm CO2$$ {\mathrm{CO}}_2 $$ (future conditions), and 1400 ppm CO2$$ {\mathrm{CO}}_2 $$, and compare the results with those obtained using the maximum likelihood approach.</description><subject>deep neural networks</subject><subject>extreme quantiles</subject><subject>generalized extreme value distribution</subject><subject>parameter estimation</subject><subject>sufficient statistics</subject><issn>1180-4009</issn><issn>1099-095X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10M1KAzEUBeAgCtYq-AhZupmaZJJJspTSqlB0o6KrIc3cKdH5KUmmtT69aevW1TmLjwv3IHRNyYQSwm6h20yY4uIEjSjROiNavJ-mThXJOCH6HF2E8ElSK4QcoY-5CRGvjTctRPAYQnStia7vcF_jFXTgTeN-oMLwHT20gDemGQBXLkTvlsNBDsF1K9zBkGyKuO39V7hEZ7VpAlz95Ri9zmcv04ds8Xz_OL1bZJaxQmRMygKEUHlhLc-NksJIUSkQRGrNlzWogtuK8txKpQrBKWFglZG5oBWlWuRjdHO8a30fgoe6XPv0gt-VlJT7Sco0SbmfJNHsSLeugd2_rpw9vR38L2rUY5M</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Rai, Sweta</creator><creator>Hoffman, Alexis</creator><creator>Lahiri, Soumendra</creator><creator>Nychka, Douglas W.</creator><creator>Sain, Stephan R.</creator><creator>Bandyopadhyay, Soutir</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2213-3333</orcidid></search><sort><creationdate>202405</creationdate><title>Fast parameter estimation of generalized extreme value distribution using neural networks</title><author>Rai, Sweta ; Hoffman, Alexis ; Lahiri, Soumendra ; Nychka, Douglas W. ; Sain, Stephan R. ; Bandyopadhyay, Soutir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2265-2776e55836cc43a875a75d8e507994bfe864cd143c788654102ec8a7351d11953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>deep neural networks</topic><topic>extreme quantiles</topic><topic>generalized extreme value distribution</topic><topic>parameter estimation</topic><topic>sufficient statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rai, Sweta</creatorcontrib><creatorcontrib>Hoffman, Alexis</creatorcontrib><creatorcontrib>Lahiri, Soumendra</creatorcontrib><creatorcontrib>Nychka, Douglas W.</creatorcontrib><creatorcontrib>Sain, Stephan R.</creatorcontrib><creatorcontrib>Bandyopadhyay, Soutir</creatorcontrib><collection>CrossRef</collection><jtitle>Environmetrics (London, Ont.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rai, Sweta</au><au>Hoffman, Alexis</au><au>Lahiri, Soumendra</au><au>Nychka, Douglas W.</au><au>Sain, Stephan R.</au><au>Bandyopadhyay, Soutir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast parameter estimation of generalized extreme value distribution using neural networks</atitle><jtitle>Environmetrics (London, Ont.)</jtitle><date>2024-05</date><risdate>2024</risdate><volume>35</volume><issue>3</issue><epage>n/a</epage><issn>1180-4009</issn><eissn>1099-095X</eissn><abstract>The heavy‐tailed behavior of the generalized extreme‐value distribution makes it a popular choice for modeling extreme events such as floods, droughts, heatwaves, wildfires and so forth. However, estimating the distribution's parameters using conventional maximum likelihood methods can be computationally intensive, even for moderate‐sized datasets. To overcome this limitation, we propose a computationally efficient, likelihood‐free estimation method utilizing a neural network. Through an extensive simulation study, we demonstrate that the proposed neural network‐based method provides generalized extreme value distribution parameter estimates with comparable accuracy to the conventional maximum likelihood method but with a significant computational speedup. To account for estimation uncertainty, we utilize parametric bootstrapping, which is inherent in the trained network. Finally, we apply this method to 1000‐year annual maximum temperature data from the Community Climate System Model version 3 across North America for three atmospheric concentrations: 289 ppm CO2$$ {\mathrm{CO}}_2 $$ (pre‐industrial), 700 ppm CO2$$ {\mathrm{CO}}_2 $$ (future conditions), and 1400 ppm CO2$$ {\mathrm{CO}}_2 $$, and compare the results with those obtained using the maximum likelihood approach.</abstract><doi>10.1002/env.2845</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-2213-3333</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1180-4009 |
ispartof | Environmetrics (London, Ont.), 2024-05, Vol.35 (3), p.n/a |
issn | 1180-4009 1099-095X |
language | eng |
recordid | cdi_crossref_primary_10_1002_env_2845 |
source | Wiley |
subjects | deep neural networks extreme quantiles generalized extreme value distribution parameter estimation sufficient statistics |
title | Fast parameter estimation of generalized extreme value distribution using neural networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A17%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20parameter%20estimation%20of%20generalized%20extreme%20value%20distribution%20using%20neural%20networks&rft.jtitle=Environmetrics%20(London,%20Ont.)&rft.au=Rai,%20Sweta&rft.date=2024-05&rft.volume=35&rft.issue=3&rft.epage=n/a&rft.issn=1180-4009&rft.eissn=1099-095X&rft_id=info:doi/10.1002/env.2845&rft_dat=%3Cwiley_cross%3EENV2845%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2265-2776e55836cc43a875a75d8e507994bfe864cd143c788654102ec8a7351d11953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |