Loading…

Fast parameter estimation of generalized extreme value distribution using neural networks

The heavy‐tailed behavior of the generalized extreme‐value distribution makes it a popular choice for modeling extreme events such as floods, droughts, heatwaves, wildfires and so forth. However, estimating the distribution's parameters using conventional maximum likelihood methods can be compu...

Full description

Saved in:
Bibliographic Details
Published in:Environmetrics (London, Ont.) Ont.), 2024-05, Vol.35 (3), p.n/a
Main Authors: Rai, Sweta, Hoffman, Alexis, Lahiri, Soumendra, Nychka, Douglas W., Sain, Stephan R., Bandyopadhyay, Soutir
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2265-2776e55836cc43a875a75d8e507994bfe864cd143c788654102ec8a7351d11953
container_end_page n/a
container_issue 3
container_start_page
container_title Environmetrics (London, Ont.)
container_volume 35
creator Rai, Sweta
Hoffman, Alexis
Lahiri, Soumendra
Nychka, Douglas W.
Sain, Stephan R.
Bandyopadhyay, Soutir
description The heavy‐tailed behavior of the generalized extreme‐value distribution makes it a popular choice for modeling extreme events such as floods, droughts, heatwaves, wildfires and so forth. However, estimating the distribution's parameters using conventional maximum likelihood methods can be computationally intensive, even for moderate‐sized datasets. To overcome this limitation, we propose a computationally efficient, likelihood‐free estimation method utilizing a neural network. Through an extensive simulation study, we demonstrate that the proposed neural network‐based method provides generalized extreme value distribution parameter estimates with comparable accuracy to the conventional maximum likelihood method but with a significant computational speedup. To account for estimation uncertainty, we utilize parametric bootstrapping, which is inherent in the trained network. Finally, we apply this method to 1000‐year annual maximum temperature data from the Community Climate System Model version 3 across North America for three atmospheric concentrations: 289 ppm CO2$$ {\mathrm{CO}}_2 $$ (pre‐industrial), 700 ppm CO2$$ {\mathrm{CO}}_2 $$ (future conditions), and 1400 ppm CO2$$ {\mathrm{CO}}_2 $$, and compare the results with those obtained using the maximum likelihood approach.
doi_str_mv 10.1002/env.2845
format article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_env_2845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ENV2845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2265-2776e55836cc43a875a75d8e507994bfe864cd143c788654102ec8a7351d11953</originalsourceid><addsrcrecordid>eNp10M1KAzEUBeAgCtYq-AhZupmaZJJJspTSqlB0o6KrIc3cKdH5KUmmtT69aevW1TmLjwv3IHRNyYQSwm6h20yY4uIEjSjROiNavJ-mThXJOCH6HF2E8ElSK4QcoY-5CRGvjTctRPAYQnStia7vcF_jFXTgTeN-oMLwHT20gDemGQBXLkTvlsNBDsF1K9zBkGyKuO39V7hEZ7VpAlz95Ri9zmcv04ds8Xz_OL1bZJaxQmRMygKEUHlhLc-NksJIUSkQRGrNlzWogtuK8txKpQrBKWFglZG5oBWlWuRjdHO8a30fgoe6XPv0gt-VlJT7Sco0SbmfJNHsSLeugd2_rpw9vR38L2rUY5M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fast parameter estimation of generalized extreme value distribution using neural networks</title><source>Wiley</source><creator>Rai, Sweta ; Hoffman, Alexis ; Lahiri, Soumendra ; Nychka, Douglas W. ; Sain, Stephan R. ; Bandyopadhyay, Soutir</creator><creatorcontrib>Rai, Sweta ; Hoffman, Alexis ; Lahiri, Soumendra ; Nychka, Douglas W. ; Sain, Stephan R. ; Bandyopadhyay, Soutir</creatorcontrib><description>The heavy‐tailed behavior of the generalized extreme‐value distribution makes it a popular choice for modeling extreme events such as floods, droughts, heatwaves, wildfires and so forth. However, estimating the distribution's parameters using conventional maximum likelihood methods can be computationally intensive, even for moderate‐sized datasets. To overcome this limitation, we propose a computationally efficient, likelihood‐free estimation method utilizing a neural network. Through an extensive simulation study, we demonstrate that the proposed neural network‐based method provides generalized extreme value distribution parameter estimates with comparable accuracy to the conventional maximum likelihood method but with a significant computational speedup. To account for estimation uncertainty, we utilize parametric bootstrapping, which is inherent in the trained network. Finally, we apply this method to 1000‐year annual maximum temperature data from the Community Climate System Model version 3 across North America for three atmospheric concentrations: 289 ppm CO2$$ {\mathrm{CO}}_2 $$ (pre‐industrial), 700 ppm CO2$$ {\mathrm{CO}}_2 $$ (future conditions), and 1400 ppm CO2$$ {\mathrm{CO}}_2 $$, and compare the results with those obtained using the maximum likelihood approach.</description><identifier>ISSN: 1180-4009</identifier><identifier>EISSN: 1099-095X</identifier><identifier>DOI: 10.1002/env.2845</identifier><language>eng</language><subject>deep neural networks ; extreme quantiles ; generalized extreme value distribution ; parameter estimation ; sufficient statistics</subject><ispartof>Environmetrics (London, Ont.), 2024-05, Vol.35 (3), p.n/a</ispartof><rights>2024 John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2265-2776e55836cc43a875a75d8e507994bfe864cd143c788654102ec8a7351d11953</cites><orcidid>0000-0003-2213-3333</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rai, Sweta</creatorcontrib><creatorcontrib>Hoffman, Alexis</creatorcontrib><creatorcontrib>Lahiri, Soumendra</creatorcontrib><creatorcontrib>Nychka, Douglas W.</creatorcontrib><creatorcontrib>Sain, Stephan R.</creatorcontrib><creatorcontrib>Bandyopadhyay, Soutir</creatorcontrib><title>Fast parameter estimation of generalized extreme value distribution using neural networks</title><title>Environmetrics (London, Ont.)</title><description>The heavy‐tailed behavior of the generalized extreme‐value distribution makes it a popular choice for modeling extreme events such as floods, droughts, heatwaves, wildfires and so forth. However, estimating the distribution's parameters using conventional maximum likelihood methods can be computationally intensive, even for moderate‐sized datasets. To overcome this limitation, we propose a computationally efficient, likelihood‐free estimation method utilizing a neural network. Through an extensive simulation study, we demonstrate that the proposed neural network‐based method provides generalized extreme value distribution parameter estimates with comparable accuracy to the conventional maximum likelihood method but with a significant computational speedup. To account for estimation uncertainty, we utilize parametric bootstrapping, which is inherent in the trained network. Finally, we apply this method to 1000‐year annual maximum temperature data from the Community Climate System Model version 3 across North America for three atmospheric concentrations: 289 ppm CO2$$ {\mathrm{CO}}_2 $$ (pre‐industrial), 700 ppm CO2$$ {\mathrm{CO}}_2 $$ (future conditions), and 1400 ppm CO2$$ {\mathrm{CO}}_2 $$, and compare the results with those obtained using the maximum likelihood approach.</description><subject>deep neural networks</subject><subject>extreme quantiles</subject><subject>generalized extreme value distribution</subject><subject>parameter estimation</subject><subject>sufficient statistics</subject><issn>1180-4009</issn><issn>1099-095X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10M1KAzEUBeAgCtYq-AhZupmaZJJJspTSqlB0o6KrIc3cKdH5KUmmtT69aevW1TmLjwv3IHRNyYQSwm6h20yY4uIEjSjROiNavJ-mThXJOCH6HF2E8ElSK4QcoY-5CRGvjTctRPAYQnStia7vcF_jFXTgTeN-oMLwHT20gDemGQBXLkTvlsNBDsF1K9zBkGyKuO39V7hEZ7VpAlz95Ri9zmcv04ds8Xz_OL1bZJaxQmRMygKEUHlhLc-NksJIUSkQRGrNlzWogtuK8txKpQrBKWFglZG5oBWlWuRjdHO8a30fgoe6XPv0gt-VlJT7Sco0SbmfJNHsSLeugd2_rpw9vR38L2rUY5M</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Rai, Sweta</creator><creator>Hoffman, Alexis</creator><creator>Lahiri, Soumendra</creator><creator>Nychka, Douglas W.</creator><creator>Sain, Stephan R.</creator><creator>Bandyopadhyay, Soutir</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2213-3333</orcidid></search><sort><creationdate>202405</creationdate><title>Fast parameter estimation of generalized extreme value distribution using neural networks</title><author>Rai, Sweta ; Hoffman, Alexis ; Lahiri, Soumendra ; Nychka, Douglas W. ; Sain, Stephan R. ; Bandyopadhyay, Soutir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2265-2776e55836cc43a875a75d8e507994bfe864cd143c788654102ec8a7351d11953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>deep neural networks</topic><topic>extreme quantiles</topic><topic>generalized extreme value distribution</topic><topic>parameter estimation</topic><topic>sufficient statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rai, Sweta</creatorcontrib><creatorcontrib>Hoffman, Alexis</creatorcontrib><creatorcontrib>Lahiri, Soumendra</creatorcontrib><creatorcontrib>Nychka, Douglas W.</creatorcontrib><creatorcontrib>Sain, Stephan R.</creatorcontrib><creatorcontrib>Bandyopadhyay, Soutir</creatorcontrib><collection>CrossRef</collection><jtitle>Environmetrics (London, Ont.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rai, Sweta</au><au>Hoffman, Alexis</au><au>Lahiri, Soumendra</au><au>Nychka, Douglas W.</au><au>Sain, Stephan R.</au><au>Bandyopadhyay, Soutir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast parameter estimation of generalized extreme value distribution using neural networks</atitle><jtitle>Environmetrics (London, Ont.)</jtitle><date>2024-05</date><risdate>2024</risdate><volume>35</volume><issue>3</issue><epage>n/a</epage><issn>1180-4009</issn><eissn>1099-095X</eissn><abstract>The heavy‐tailed behavior of the generalized extreme‐value distribution makes it a popular choice for modeling extreme events such as floods, droughts, heatwaves, wildfires and so forth. However, estimating the distribution's parameters using conventional maximum likelihood methods can be computationally intensive, even for moderate‐sized datasets. To overcome this limitation, we propose a computationally efficient, likelihood‐free estimation method utilizing a neural network. Through an extensive simulation study, we demonstrate that the proposed neural network‐based method provides generalized extreme value distribution parameter estimates with comparable accuracy to the conventional maximum likelihood method but with a significant computational speedup. To account for estimation uncertainty, we utilize parametric bootstrapping, which is inherent in the trained network. Finally, we apply this method to 1000‐year annual maximum temperature data from the Community Climate System Model version 3 across North America for three atmospheric concentrations: 289 ppm CO2$$ {\mathrm{CO}}_2 $$ (pre‐industrial), 700 ppm CO2$$ {\mathrm{CO}}_2 $$ (future conditions), and 1400 ppm CO2$$ {\mathrm{CO}}_2 $$, and compare the results with those obtained using the maximum likelihood approach.</abstract><doi>10.1002/env.2845</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-2213-3333</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1180-4009
ispartof Environmetrics (London, Ont.), 2024-05, Vol.35 (3), p.n/a
issn 1180-4009
1099-095X
language eng
recordid cdi_crossref_primary_10_1002_env_2845
source Wiley
subjects deep neural networks
extreme quantiles
generalized extreme value distribution
parameter estimation
sufficient statistics
title Fast parameter estimation of generalized extreme value distribution using neural networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A17%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20parameter%20estimation%20of%20generalized%20extreme%20value%20distribution%20using%20neural%20networks&rft.jtitle=Environmetrics%20(London,%20Ont.)&rft.au=Rai,%20Sweta&rft.date=2024-05&rft.volume=35&rft.issue=3&rft.epage=n/a&rft.issn=1180-4009&rft.eissn=1099-095X&rft_id=info:doi/10.1002/env.2845&rft_dat=%3Cwiley_cross%3EENV2845%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2265-2776e55836cc43a875a75d8e507994bfe864cd143c788654102ec8a7351d11953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true