Loading…

About the Choice of the Protogenic Group in PEM Separator Materials for Intermediate Temperature, Low Humidity Operation: A Critical Comparison of Sulfonic Acid, Phosphonic Acid and Imidazole Functionalized Model Compounds

Traditionally, sulfonated polymers are used as separator materials in PEM fuel cells. Based on recent experimental results on model compounds this paper critically discusses the potentials and limits of sulfonic acid and alternatively phosphonic acid and heterocycles (imidazole) as protogenic groups...

Full description

Saved in:
Bibliographic Details
Published in:Fuel cells (Weinheim an der Bergstrasse, Germany) Germany), 2005-08, Vol.5 (3), p.355-365
Main Authors: Schuster, M., Rager, T., Noda, A., Kreuer, K. D., Maier, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Traditionally, sulfonated polymers are used as separator materials in PEM fuel cells. Based on recent experimental results on model compounds this paper critically discusses the potentials and limits of sulfonic acid and alternatively phosphonic acid and heterocycles (imidazole) as protogenic groups for PEM fuel cell electrolytes operating at intermediate temperatures (T > 100 °C) and low humidification. Apart from transport properties, the stability and reactivity of mono‐functionalized model compounds (1‐heptylsulfonic acid (S‐C7), 1‐heptylphosphonic acid (P‐C7) and 2‐heptyl‐imidazole (I‐C7)) and a few diphosphonic acids are examined under wet and dry conditions. These are characterized with respect to their proton conductivity (ac impedance spectroscopy), proton diffusion coefficient (pulsed‐field gradient NMR), thermo‐oxidative stability (TGA under air), electrochemical stability (cyclic voltammetry) and their hydration behavior (TGA under water vapor). The sulfonic acid functionalized compound shows reasonable properties only when a minimum hydration level is guaranteed, while phosphonic acid functionalized compounds combine satisfactory proton conductivity even in the water‐free state at intermediate temperatures (T 
ISSN:1615-6846
1615-6854
DOI:10.1002/fuce.200400059