Loading…

Chemoradiotherapy: Emerging treatment improvement strategies

Background. The use of chemotherapeutic drugs in combination with radiotherapy has become a common strategy for the treatment of advanced cancer. Solid evidence exists showing that chemotherapy administered during the course of radiotherapy (concurrent chemoradiotherapy) increases both local tumor c...

Full description

Saved in:
Bibliographic Details
Published in:Head & neck 2003-02, Vol.25 (2), p.152-167
Main Authors: Milas, Luka, Mason, Kathryn A., Liao, Zhongxing, Ang, Kian K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background. The use of chemotherapeutic drugs in combination with radiotherapy has become a common strategy for the treatment of advanced cancer. Solid evidence exists showing that chemotherapy administered during the course of radiotherapy (concurrent chemoradiotherapy) increases both local tumor control and patient survival in a number of cancer sites, including head and neck cancer. These therapy improvements, however, have been achieved at the expense of considerable toxicity, which underscores the need for further improvements. Methods. The current status of chemoradiotherapy clinical trials for head and neck cancer and research on the emerging treatment improvements were reviewed. A review of potential treatment improvement strategies focused on preclinical investigations on newer chemotherapeutic agents, notably taxanes and nucleoside analogues, as well as on molecular targets such as epidermal growth factor receptor (EGFR) or cyclooxygenase‐2 (COX‐2) enzyme. Results. Concurrent, but not induction (drugs given before radiotherapy), chemoradiotherapy improves locoregional tumor control and survival benefit in head and neck carcinoma relative to radiotherapy alone. In comparison, both concurrent and induction chemoradiotherapy showed therapeutic advantage over radiotherapy alone in the treatment of lung cancer. These therapeutic improvements were achieved with standard chemotherapeutic drugs, most commonly cisplatin‐based chemotherapy. Biologically, chemotherapy interacts with radiation through a number of mechanisms, including inhibition of cellular repair, cell cycle effects, and inhibition of tumor cell regeneration. Potential avenues emerged to further improve chemoradiotherapy. One of these involves the newer chemotherapeutic agents, taxanes and nucleoside analogues, which in preclinical studies exhibited strong tumor radiosensitization and therapeutic gain. The clinical benefit of these agents is currently under testing. Another approach for improvement of chemoradiotherapy consists of inhibiting molecules selectively or preferentially expressed on tumor cells, such as EGFR and COX‐2, both shown to render cellular resistance to drugs or radiation. Agents that selectively inhibit these molecules are becoming available at a rapid rate, and many of them have been shown in preclinical testing to be highly effective in improving tumor radioresponse or chemoresponse without affecting normal tissues. Conclusions. Concurrent chemoradiotherapy, using sta
ISSN:1043-3074
1097-0347
DOI:10.1002/hed.10232