Loading…

Activation energy and binary chemical reaction on unsteady MHD Williamson nanofluid containing motile gyrotactic micro‐organisms

The author presents the influence of Arrhenius activation energy and binary chemical reaction on an unsteady magnetohydrodynamics Williamson nanofluid with motile gyrotactic micro‐organisms. The governing equations are converted to coupled ordinary differential equations with similarity transformati...

Full description

Saved in:
Bibliographic Details
Published in:Heat transfer (Hoboken, N.J. Print) N.J. Print), 2020-07, Vol.49 (5), p.3030-3043
Main Authors: De, Poulomi, Gorji, Mohammad Rahimi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3069-8a6e873426c2f6cc3597128679300631d903b6cf7367ba11dacf9852c7bb00853
cites cdi_FETCH-LOGICAL-c3069-8a6e873426c2f6cc3597128679300631d903b6cf7367ba11dacf9852c7bb00853
container_end_page 3043
container_issue 5
container_start_page 3030
container_title Heat transfer (Hoboken, N.J. Print)
container_volume 49
creator De, Poulomi
Gorji, Mohammad Rahimi
description The author presents the influence of Arrhenius activation energy and binary chemical reaction on an unsteady magnetohydrodynamics Williamson nanofluid with motile gyrotactic micro‐organisms. The governing equations are converted to coupled ordinary differential equations with similarity transformations and the fifth‐order Runge‐Kutta Fehlberg method and the shooting algorithm is applied to solve these equations using the appropriate boundary conditions. A detailed investigation considering the effects of different physical parameters on the profiles like velocity, temperature, concentration, and density of motile gyrotactic micro‐organisms was done and plotted graphically. It is found that the thermal boundary layer enhances for the chemical reaction rate and the solutal boundary layer increases for activation energy. Furthermore, the nondimensional Williamson parameter reduces for the velocity profile. The author studied the wall temperature gradient of different fluids and found that temperature gradient decreased for the present study. Comparisons of the present result with published work were done to verify the present code.
doi_str_mv 10.1002/htj.21759
format article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_htj_21759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>HTJ21759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3069-8a6e873426c2f6cc3597128679300631d903b6cf7367ba11dacf9852c7bb00853</originalsourceid><addsrcrecordid>eNp1kEtOwzAQhi0EElXpght4yyKtH4ntLKvyKKiITRHLyHGc1FXiINsFZYc4AWfkJLgtYoc00oxG3_wz8wNwidEUI0Rmm7CdEsyz_ASMCBMiSbOUnP7VND0HE--3KLIZxpywEficq2DeZDC9hdpq1wxQ2gqWxko3QLXRnVGyhU5LdWBi7KwPWlYDfFxewxfTtkZ2PvattH3d7kwFVW-DNNbYBnZ9MK2GzeD6sJdQMAq6_vvjq3eNtMZ3_gKc1bL1evKbx-D59ma9WCarp7v7xXyVKIpYngjJtOA0JUyRmilFs5xjIhjPKUKM4ipHtGSq5pTxUmJcSVXnIiOKlyVCIqNjcHXUjfu9d7ouXp3p4psFRsXevyL6Vxz8i-zsyL7H64f_wWK5fjhO_AB_sHUx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Activation energy and binary chemical reaction on unsteady MHD Williamson nanofluid containing motile gyrotactic micro‐organisms</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>De, Poulomi ; Gorji, Mohammad Rahimi</creator><creatorcontrib>De, Poulomi ; Gorji, Mohammad Rahimi</creatorcontrib><description>The author presents the influence of Arrhenius activation energy and binary chemical reaction on an unsteady magnetohydrodynamics Williamson nanofluid with motile gyrotactic micro‐organisms. The governing equations are converted to coupled ordinary differential equations with similarity transformations and the fifth‐order Runge‐Kutta Fehlberg method and the shooting algorithm is applied to solve these equations using the appropriate boundary conditions. A detailed investigation considering the effects of different physical parameters on the profiles like velocity, temperature, concentration, and density of motile gyrotactic micro‐organisms was done and plotted graphically. It is found that the thermal boundary layer enhances for the chemical reaction rate and the solutal boundary layer increases for activation energy. Furthermore, the nondimensional Williamson parameter reduces for the velocity profile. The author studied the wall temperature gradient of different fluids and found that temperature gradient decreased for the present study. Comparisons of the present result with published work were done to verify the present code.</description><identifier>ISSN: 2688-4534</identifier><identifier>EISSN: 2688-4542</identifier><identifier>DOI: 10.1002/htj.21759</identifier><language>eng</language><subject>Arrhenius activation energy ; binary chemical reaction ; magnetohydrodynamics ; motile gyrotactic micro‐organisms ; Williamson nanofluid</subject><ispartof>Heat transfer (Hoboken, N.J. Print), 2020-07, Vol.49 (5), p.3030-3043</ispartof><rights>2020 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3069-8a6e873426c2f6cc3597128679300631d903b6cf7367ba11dacf9852c7bb00853</citedby><cites>FETCH-LOGICAL-c3069-8a6e873426c2f6cc3597128679300631d903b6cf7367ba11dacf9852c7bb00853</cites><orcidid>0000-0001-9203-8628</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>De, Poulomi</creatorcontrib><creatorcontrib>Gorji, Mohammad Rahimi</creatorcontrib><title>Activation energy and binary chemical reaction on unsteady MHD Williamson nanofluid containing motile gyrotactic micro‐organisms</title><title>Heat transfer (Hoboken, N.J. Print)</title><description>The author presents the influence of Arrhenius activation energy and binary chemical reaction on an unsteady magnetohydrodynamics Williamson nanofluid with motile gyrotactic micro‐organisms. The governing equations are converted to coupled ordinary differential equations with similarity transformations and the fifth‐order Runge‐Kutta Fehlberg method and the shooting algorithm is applied to solve these equations using the appropriate boundary conditions. A detailed investigation considering the effects of different physical parameters on the profiles like velocity, temperature, concentration, and density of motile gyrotactic micro‐organisms was done and plotted graphically. It is found that the thermal boundary layer enhances for the chemical reaction rate and the solutal boundary layer increases for activation energy. Furthermore, the nondimensional Williamson parameter reduces for the velocity profile. The author studied the wall temperature gradient of different fluids and found that temperature gradient decreased for the present study. Comparisons of the present result with published work were done to verify the present code.</description><subject>Arrhenius activation energy</subject><subject>binary chemical reaction</subject><subject>magnetohydrodynamics</subject><subject>motile gyrotactic micro‐organisms</subject><subject>Williamson nanofluid</subject><issn>2688-4534</issn><issn>2688-4542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEtOwzAQhi0EElXpght4yyKtH4ntLKvyKKiITRHLyHGc1FXiINsFZYc4AWfkJLgtYoc00oxG3_wz8wNwidEUI0Rmm7CdEsyz_ASMCBMiSbOUnP7VND0HE--3KLIZxpywEficq2DeZDC9hdpq1wxQ2gqWxko3QLXRnVGyhU5LdWBi7KwPWlYDfFxewxfTtkZ2PvattH3d7kwFVW-DNNbYBnZ9MK2GzeD6sJdQMAq6_vvjq3eNtMZ3_gKc1bL1evKbx-D59ma9WCarp7v7xXyVKIpYngjJtOA0JUyRmilFs5xjIhjPKUKM4ipHtGSq5pTxUmJcSVXnIiOKlyVCIqNjcHXUjfu9d7ouXp3p4psFRsXevyL6Vxz8i-zsyL7H64f_wWK5fjhO_AB_sHUx</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>De, Poulomi</creator><creator>Gorji, Mohammad Rahimi</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9203-8628</orcidid></search><sort><creationdate>202007</creationdate><title>Activation energy and binary chemical reaction on unsteady MHD Williamson nanofluid containing motile gyrotactic micro‐organisms</title><author>De, Poulomi ; Gorji, Mohammad Rahimi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3069-8a6e873426c2f6cc3597128679300631d903b6cf7367ba11dacf9852c7bb00853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Arrhenius activation energy</topic><topic>binary chemical reaction</topic><topic>magnetohydrodynamics</topic><topic>motile gyrotactic micro‐organisms</topic><topic>Williamson nanofluid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De, Poulomi</creatorcontrib><creatorcontrib>Gorji, Mohammad Rahimi</creatorcontrib><collection>CrossRef</collection><jtitle>Heat transfer (Hoboken, N.J. Print)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De, Poulomi</au><au>Gorji, Mohammad Rahimi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activation energy and binary chemical reaction on unsteady MHD Williamson nanofluid containing motile gyrotactic micro‐organisms</atitle><jtitle>Heat transfer (Hoboken, N.J. Print)</jtitle><date>2020-07</date><risdate>2020</risdate><volume>49</volume><issue>5</issue><spage>3030</spage><epage>3043</epage><pages>3030-3043</pages><issn>2688-4534</issn><eissn>2688-4542</eissn><abstract>The author presents the influence of Arrhenius activation energy and binary chemical reaction on an unsteady magnetohydrodynamics Williamson nanofluid with motile gyrotactic micro‐organisms. The governing equations are converted to coupled ordinary differential equations with similarity transformations and the fifth‐order Runge‐Kutta Fehlberg method and the shooting algorithm is applied to solve these equations using the appropriate boundary conditions. A detailed investigation considering the effects of different physical parameters on the profiles like velocity, temperature, concentration, and density of motile gyrotactic micro‐organisms was done and plotted graphically. It is found that the thermal boundary layer enhances for the chemical reaction rate and the solutal boundary layer increases for activation energy. Furthermore, the nondimensional Williamson parameter reduces for the velocity profile. The author studied the wall temperature gradient of different fluids and found that temperature gradient decreased for the present study. Comparisons of the present result with published work were done to verify the present code.</abstract><doi>10.1002/htj.21759</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9203-8628</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2688-4534
ispartof Heat transfer (Hoboken, N.J. Print), 2020-07, Vol.49 (5), p.3030-3043
issn 2688-4534
2688-4542
language eng
recordid cdi_crossref_primary_10_1002_htj_21759
source Wiley-Blackwell Read & Publish Collection
subjects Arrhenius activation energy
binary chemical reaction
magnetohydrodynamics
motile gyrotactic micro‐organisms
Williamson nanofluid
title Activation energy and binary chemical reaction on unsteady MHD Williamson nanofluid containing motile gyrotactic micro‐organisms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T12%3A02%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activation%20energy%20and%20binary%20chemical%20reaction%20on%20unsteady%20MHD%20Williamson%20nanofluid%20containing%20motile%20gyrotactic%20micro%E2%80%90organisms&rft.jtitle=Heat%20transfer%20(Hoboken,%20N.J.%20Print)&rft.au=De,%20Poulomi&rft.date=2020-07&rft.volume=49&rft.issue=5&rft.spage=3030&rft.epage=3043&rft.pages=3030-3043&rft.issn=2688-4534&rft.eissn=2688-4542&rft_id=info:doi/10.1002/htj.21759&rft_dat=%3Cwiley_cross%3EHTJ21759%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3069-8a6e873426c2f6cc3597128679300631d903b6cf7367ba11dacf9852c7bb00853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true