Loading…
Genetic algorithm‐assisted artificial neural network for retrieval of a parameter in a third grade fluid flow through two parallel and heated plates
Genetic algorithm (GA) has been used to determine important attributes of artificial neural network (ANN), such as number of neurons in different hidden layers and division of data for training, validation, and testing. The GA‐assisted ANN (GAAANN) model was used to retrieve third grade fluid (TGF)...
Saved in:
Published in: | Heat transfer (Hoboken, N.J. Print) N.J. Print), 2021-05, Vol.50 (3), p.2090-2128 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Genetic algorithm (GA) has been used to determine important attributes of artificial neural network (ANN), such as number of neurons in different hidden layers and division of data for training, validation, and testing. The GA‐assisted ANN (GAAANN) model was used to retrieve third grade fluid (TGF) parameter (A) in a TGF flow problem. The TGF was allowed to flow through two parallel plates, which were subjected to uniform heat flux. The least square method (LSM) was used to solve the governing equations, for specified boundary conditions. In this way, temperature profiles for different values of A were computed by LSM, constituting the direct part of the problem. In the inverse part, the GAAANN model was fed with a temperature profile as input and the corresponding value of A was obtained as output. Four different GAAANN model were developed, and a detailed analysis was done in retrieving the value of A by different GAAANN models. Two very important and commonly used algorithms: Levenberg‐Marquardt (LM) and scaled conjugate gradient are explored for training of the neurons. The entire four GAAANN model were able to retrieve the value of A with different levels of accuracy. |
---|---|
ISSN: | 2688-4534 2688-4542 |
DOI: | 10.1002/htj.21970 |