Loading…
Transport of thermal energy in the magnetohydrodynamic oblique stagnation point flow in a hybrid nanofluid with nanoparticle shape effect
In the present paper, the augmented heat characteristics of a hybrid nanofluid which is a blend of Al2O3 (alumina) and Ag (silver) in the host hybrid fluid (C2H6O2‐H2O) (50%–50%) impinging obliquely on an elastic surface with magnetic lines of force are investigated. The properties of the nanofluid...
Saved in:
Published in: | Heat transfer (Hoboken, N.J. Print) N.J. Print), 2022-07, Vol.51 (5), p.4331-4348 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2292-521cc5eb26cc242f86b824196d396086a3445b04d07b1a8be99ee1f3d29392bf3 |
container_end_page | 4348 |
container_issue | 5 |
container_start_page | 4331 |
container_title | Heat transfer (Hoboken, N.J. Print) |
container_volume | 51 |
creator | Kata, Sreelakshmi Ganganapalli, Sarojamma Kuppalapalle, Vajravelu |
description | In the present paper, the augmented heat characteristics of a hybrid nanofluid which is a blend of Al2O3 (alumina) and Ag (silver) in the host hybrid fluid (C2H6O2‐H2O) (50%–50%) impinging obliquely on an elastic surface with magnetic lines of force are investigated. The properties of the nanofluid are assessed through the computational solutions established with the aid of the popular Runge–Kutta–Fehlberg fifth‐order (RKF 5) numerical technique. Outputs of the analysis reveal that the rate of thermal energy transport in the hybrid (mono) nanofluid is enhanced by 11.5% (5.8%) by using blade‐shaped nanoparticles in comparison to that of the spherical particles. Stream contours of both nanofluids are inclined to the left (right) of the stagnation‐point for positive (negative) values of the stagnation flow parameter. |
doi_str_mv | 10.1002/htj.22502 |
format | article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_htj_22502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>HTJ22502</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2292-521cc5eb26cc242f86b824196d396086a3445b04d07b1a8be99ee1f3d29392bf3</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EElXpwD_wytDWvjhpMqIKKKgSS5kj2zk3rhI7OK6q_AT-NSlFbEz37u57b3iE3HO24IzBso6HBUDK4IpMIMvzuUgFXP_pRNySWd8f2MimnK8gm5CvXZCu73yI1BsaawytbCg6DPuBWne-0FbuHUZfD1Xw1eBkazX1qrGfR6R9HJ8yWu9o562L1DT-dDZKWg8q2Io66bxpjqM62Vj_rJ0M0epmdNeyQ4rGoI535MbIpsfZ75ySj-en3Xoz376_vK4ft3MNUMA8Ba51igoyrUGAyTOVg-BFViVFxvJMJkKkiomKrRSXucKiQOQmqaBIClAmmZKHS64Ovu8DmrILtpVhKDkrzzWWY43lT40ju7ywJ9vg8D9YbnZvF8c36c93RQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Transport of thermal energy in the magnetohydrodynamic oblique stagnation point flow in a hybrid nanofluid with nanoparticle shape effect</title><source>Wiley</source><creator>Kata, Sreelakshmi ; Ganganapalli, Sarojamma ; Kuppalapalle, Vajravelu</creator><creatorcontrib>Kata, Sreelakshmi ; Ganganapalli, Sarojamma ; Kuppalapalle, Vajravelu</creatorcontrib><description>In the present paper, the augmented heat characteristics of a hybrid nanofluid which is a blend of Al2O3 (alumina) and Ag (silver) in the host hybrid fluid (C2H6O2‐H2O) (50%–50%) impinging obliquely on an elastic surface with magnetic lines of force are investigated. The properties of the nanofluid are assessed through the computational solutions established with the aid of the popular Runge–Kutta–Fehlberg fifth‐order (RKF 5) numerical technique. Outputs of the analysis reveal that the rate of thermal energy transport in the hybrid (mono) nanofluid is enhanced by 11.5% (5.8%) by using blade‐shaped nanoparticles in comparison to that of the spherical particles. Stream contours of both nanofluids are inclined to the left (right) of the stagnation‐point for positive (negative) values of the stagnation flow parameter.</description><identifier>ISSN: 2688-4534</identifier><identifier>EISSN: 2688-4542</identifier><identifier>DOI: 10.1002/htj.22502</identifier><language>eng</language><subject>hybrid nanofluid ; MHD ; oblique stagnation point flow ; shape factor ; stream contours</subject><ispartof>Heat transfer (Hoboken, N.J. Print), 2022-07, Vol.51 (5), p.4331-4348</ispartof><rights>2022 Wiley Periodicals LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2292-521cc5eb26cc242f86b824196d396086a3445b04d07b1a8be99ee1f3d29392bf3</cites><orcidid>0000-0003-4656-8083 ; 0000-0001-7164-5955</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kata, Sreelakshmi</creatorcontrib><creatorcontrib>Ganganapalli, Sarojamma</creatorcontrib><creatorcontrib>Kuppalapalle, Vajravelu</creatorcontrib><title>Transport of thermal energy in the magnetohydrodynamic oblique stagnation point flow in a hybrid nanofluid with nanoparticle shape effect</title><title>Heat transfer (Hoboken, N.J. Print)</title><description>In the present paper, the augmented heat characteristics of a hybrid nanofluid which is a blend of Al2O3 (alumina) and Ag (silver) in the host hybrid fluid (C2H6O2‐H2O) (50%–50%) impinging obliquely on an elastic surface with magnetic lines of force are investigated. The properties of the nanofluid are assessed through the computational solutions established with the aid of the popular Runge–Kutta–Fehlberg fifth‐order (RKF 5) numerical technique. Outputs of the analysis reveal that the rate of thermal energy transport in the hybrid (mono) nanofluid is enhanced by 11.5% (5.8%) by using blade‐shaped nanoparticles in comparison to that of the spherical particles. Stream contours of both nanofluids are inclined to the left (right) of the stagnation‐point for positive (negative) values of the stagnation flow parameter.</description><subject>hybrid nanofluid</subject><subject>MHD</subject><subject>oblique stagnation point flow</subject><subject>shape factor</subject><subject>stream contours</subject><issn>2688-4534</issn><issn>2688-4542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQhS0EElXpwD_wytDWvjhpMqIKKKgSS5kj2zk3rhI7OK6q_AT-NSlFbEz37u57b3iE3HO24IzBso6HBUDK4IpMIMvzuUgFXP_pRNySWd8f2MimnK8gm5CvXZCu73yI1BsaawytbCg6DPuBWne-0FbuHUZfD1Xw1eBkazX1qrGfR6R9HJ8yWu9o562L1DT-dDZKWg8q2Io66bxpjqM62Vj_rJ0M0epmdNeyQ4rGoI535MbIpsfZ75ySj-en3Xoz376_vK4ft3MNUMA8Ba51igoyrUGAyTOVg-BFViVFxvJMJkKkiomKrRSXucKiQOQmqaBIClAmmZKHS64Ovu8DmrILtpVhKDkrzzWWY43lT40ju7ywJ9vg8D9YbnZvF8c36c93RQ</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Kata, Sreelakshmi</creator><creator>Ganganapalli, Sarojamma</creator><creator>Kuppalapalle, Vajravelu</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4656-8083</orcidid><orcidid>https://orcid.org/0000-0001-7164-5955</orcidid></search><sort><creationdate>202207</creationdate><title>Transport of thermal energy in the magnetohydrodynamic oblique stagnation point flow in a hybrid nanofluid with nanoparticle shape effect</title><author>Kata, Sreelakshmi ; Ganganapalli, Sarojamma ; Kuppalapalle, Vajravelu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2292-521cc5eb26cc242f86b824196d396086a3445b04d07b1a8be99ee1f3d29392bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>hybrid nanofluid</topic><topic>MHD</topic><topic>oblique stagnation point flow</topic><topic>shape factor</topic><topic>stream contours</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kata, Sreelakshmi</creatorcontrib><creatorcontrib>Ganganapalli, Sarojamma</creatorcontrib><creatorcontrib>Kuppalapalle, Vajravelu</creatorcontrib><collection>CrossRef</collection><jtitle>Heat transfer (Hoboken, N.J. Print)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kata, Sreelakshmi</au><au>Ganganapalli, Sarojamma</au><au>Kuppalapalle, Vajravelu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transport of thermal energy in the magnetohydrodynamic oblique stagnation point flow in a hybrid nanofluid with nanoparticle shape effect</atitle><jtitle>Heat transfer (Hoboken, N.J. Print)</jtitle><date>2022-07</date><risdate>2022</risdate><volume>51</volume><issue>5</issue><spage>4331</spage><epage>4348</epage><pages>4331-4348</pages><issn>2688-4534</issn><eissn>2688-4542</eissn><abstract>In the present paper, the augmented heat characteristics of a hybrid nanofluid which is a blend of Al2O3 (alumina) and Ag (silver) in the host hybrid fluid (C2H6O2‐H2O) (50%–50%) impinging obliquely on an elastic surface with magnetic lines of force are investigated. The properties of the nanofluid are assessed through the computational solutions established with the aid of the popular Runge–Kutta–Fehlberg fifth‐order (RKF 5) numerical technique. Outputs of the analysis reveal that the rate of thermal energy transport in the hybrid (mono) nanofluid is enhanced by 11.5% (5.8%) by using blade‐shaped nanoparticles in comparison to that of the spherical particles. Stream contours of both nanofluids are inclined to the left (right) of the stagnation‐point for positive (negative) values of the stagnation flow parameter.</abstract><doi>10.1002/htj.22502</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-4656-8083</orcidid><orcidid>https://orcid.org/0000-0001-7164-5955</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2688-4534 |
ispartof | Heat transfer (Hoboken, N.J. Print), 2022-07, Vol.51 (5), p.4331-4348 |
issn | 2688-4534 2688-4542 |
language | eng |
recordid | cdi_crossref_primary_10_1002_htj_22502 |
source | Wiley |
subjects | hybrid nanofluid MHD oblique stagnation point flow shape factor stream contours |
title | Transport of thermal energy in the magnetohydrodynamic oblique stagnation point flow in a hybrid nanofluid with nanoparticle shape effect |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A56%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transport%20of%20thermal%20energy%20in%20the%20magnetohydrodynamic%20oblique%20stagnation%20point%20flow%20in%20a%20hybrid%20nanofluid%20with%20nanoparticle%20shape%20effect&rft.jtitle=Heat%20transfer%20(Hoboken,%20N.J.%20Print)&rft.au=Kata,%20Sreelakshmi&rft.date=2022-07&rft.volume=51&rft.issue=5&rft.spage=4331&rft.epage=4348&rft.pages=4331-4348&rft.issn=2688-4534&rft.eissn=2688-4542&rft_id=info:doi/10.1002/htj.22502&rft_dat=%3Cwiley_cross%3EHTJ22502%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2292-521cc5eb26cc242f86b824196d396086a3445b04d07b1a8be99ee1f3d29392bf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |