Loading…

Transport of thermal energy in the magnetohydrodynamic oblique stagnation point flow in a hybrid nanofluid with nanoparticle shape effect

In the present paper, the augmented heat characteristics of a hybrid nanofluid which is a blend of Al2O3 (alumina) and Ag (silver) in the host hybrid fluid (C2H6O2‐H2O) (50%–50%) impinging obliquely on an elastic surface with magnetic lines of force are investigated. The properties of the nanofluid...

Full description

Saved in:
Bibliographic Details
Published in:Heat transfer (Hoboken, N.J. Print) N.J. Print), 2022-07, Vol.51 (5), p.4331-4348
Main Authors: Kata, Sreelakshmi, Ganganapalli, Sarojamma, Kuppalapalle, Vajravelu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2292-521cc5eb26cc242f86b824196d396086a3445b04d07b1a8be99ee1f3d29392bf3
container_end_page 4348
container_issue 5
container_start_page 4331
container_title Heat transfer (Hoboken, N.J. Print)
container_volume 51
creator Kata, Sreelakshmi
Ganganapalli, Sarojamma
Kuppalapalle, Vajravelu
description In the present paper, the augmented heat characteristics of a hybrid nanofluid which is a blend of Al2O3 (alumina) and Ag (silver) in the host hybrid fluid (C2H6O2‐H2O) (50%–50%) impinging obliquely on an elastic surface with magnetic lines of force are investigated. The properties of the nanofluid are assessed through the computational solutions established with the aid of the popular Runge–Kutta–Fehlberg fifth‐order (RKF 5) numerical technique. Outputs of the analysis reveal that the rate of thermal energy transport in the hybrid (mono) nanofluid is enhanced by 11.5% (5.8%) by using blade‐shaped nanoparticles in comparison to that of the spherical particles. Stream contours of both nanofluids are inclined to the left (right) of the stagnation‐point for positive (negative) values of the stagnation flow parameter.
doi_str_mv 10.1002/htj.22502
format article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_htj_22502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>HTJ22502</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2292-521cc5eb26cc242f86b824196d396086a3445b04d07b1a8be99ee1f3d29392bf3</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EElXpwD_wytDWvjhpMqIKKKgSS5kj2zk3rhI7OK6q_AT-NSlFbEz37u57b3iE3HO24IzBso6HBUDK4IpMIMvzuUgFXP_pRNySWd8f2MimnK8gm5CvXZCu73yI1BsaawytbCg6DPuBWne-0FbuHUZfD1Xw1eBkazX1qrGfR6R9HJ8yWu9o562L1DT-dDZKWg8q2Io66bxpjqM62Vj_rJ0M0epmdNeyQ4rGoI535MbIpsfZ75ySj-en3Xoz376_vK4ft3MNUMA8Ba51igoyrUGAyTOVg-BFViVFxvJMJkKkiomKrRSXucKiQOQmqaBIClAmmZKHS64Ovu8DmrILtpVhKDkrzzWWY43lT40ju7ywJ9vg8D9YbnZvF8c36c93RQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Transport of thermal energy in the magnetohydrodynamic oblique stagnation point flow in a hybrid nanofluid with nanoparticle shape effect</title><source>Wiley</source><creator>Kata, Sreelakshmi ; Ganganapalli, Sarojamma ; Kuppalapalle, Vajravelu</creator><creatorcontrib>Kata, Sreelakshmi ; Ganganapalli, Sarojamma ; Kuppalapalle, Vajravelu</creatorcontrib><description>In the present paper, the augmented heat characteristics of a hybrid nanofluid which is a blend of Al2O3 (alumina) and Ag (silver) in the host hybrid fluid (C2H6O2‐H2O) (50%–50%) impinging obliquely on an elastic surface with magnetic lines of force are investigated. The properties of the nanofluid are assessed through the computational solutions established with the aid of the popular Runge–Kutta–Fehlberg fifth‐order (RKF 5) numerical technique. Outputs of the analysis reveal that the rate of thermal energy transport in the hybrid (mono) nanofluid is enhanced by 11.5% (5.8%) by using blade‐shaped nanoparticles in comparison to that of the spherical particles. Stream contours of both nanofluids are inclined to the left (right) of the stagnation‐point for positive (negative) values of the stagnation flow parameter.</description><identifier>ISSN: 2688-4534</identifier><identifier>EISSN: 2688-4542</identifier><identifier>DOI: 10.1002/htj.22502</identifier><language>eng</language><subject>hybrid nanofluid ; MHD ; oblique stagnation point flow ; shape factor ; stream contours</subject><ispartof>Heat transfer (Hoboken, N.J. Print), 2022-07, Vol.51 (5), p.4331-4348</ispartof><rights>2022 Wiley Periodicals LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2292-521cc5eb26cc242f86b824196d396086a3445b04d07b1a8be99ee1f3d29392bf3</cites><orcidid>0000-0003-4656-8083 ; 0000-0001-7164-5955</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kata, Sreelakshmi</creatorcontrib><creatorcontrib>Ganganapalli, Sarojamma</creatorcontrib><creatorcontrib>Kuppalapalle, Vajravelu</creatorcontrib><title>Transport of thermal energy in the magnetohydrodynamic oblique stagnation point flow in a hybrid nanofluid with nanoparticle shape effect</title><title>Heat transfer (Hoboken, N.J. Print)</title><description>In the present paper, the augmented heat characteristics of a hybrid nanofluid which is a blend of Al2O3 (alumina) and Ag (silver) in the host hybrid fluid (C2H6O2‐H2O) (50%–50%) impinging obliquely on an elastic surface with magnetic lines of force are investigated. The properties of the nanofluid are assessed through the computational solutions established with the aid of the popular Runge–Kutta–Fehlberg fifth‐order (RKF 5) numerical technique. Outputs of the analysis reveal that the rate of thermal energy transport in the hybrid (mono) nanofluid is enhanced by 11.5% (5.8%) by using blade‐shaped nanoparticles in comparison to that of the spherical particles. Stream contours of both nanofluids are inclined to the left (right) of the stagnation‐point for positive (negative) values of the stagnation flow parameter.</description><subject>hybrid nanofluid</subject><subject>MHD</subject><subject>oblique stagnation point flow</subject><subject>shape factor</subject><subject>stream contours</subject><issn>2688-4534</issn><issn>2688-4542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQhS0EElXpwD_wytDWvjhpMqIKKKgSS5kj2zk3rhI7OK6q_AT-NSlFbEz37u57b3iE3HO24IzBso6HBUDK4IpMIMvzuUgFXP_pRNySWd8f2MimnK8gm5CvXZCu73yI1BsaawytbCg6DPuBWne-0FbuHUZfD1Xw1eBkazX1qrGfR6R9HJ8yWu9o562L1DT-dDZKWg8q2Io66bxpjqM62Vj_rJ0M0epmdNeyQ4rGoI535MbIpsfZ75ySj-en3Xoz376_vK4ft3MNUMA8Ba51igoyrUGAyTOVg-BFViVFxvJMJkKkiomKrRSXucKiQOQmqaBIClAmmZKHS64Ovu8DmrILtpVhKDkrzzWWY43lT40ju7ywJ9vg8D9YbnZvF8c36c93RQ</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Kata, Sreelakshmi</creator><creator>Ganganapalli, Sarojamma</creator><creator>Kuppalapalle, Vajravelu</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4656-8083</orcidid><orcidid>https://orcid.org/0000-0001-7164-5955</orcidid></search><sort><creationdate>202207</creationdate><title>Transport of thermal energy in the magnetohydrodynamic oblique stagnation point flow in a hybrid nanofluid with nanoparticle shape effect</title><author>Kata, Sreelakshmi ; Ganganapalli, Sarojamma ; Kuppalapalle, Vajravelu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2292-521cc5eb26cc242f86b824196d396086a3445b04d07b1a8be99ee1f3d29392bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>hybrid nanofluid</topic><topic>MHD</topic><topic>oblique stagnation point flow</topic><topic>shape factor</topic><topic>stream contours</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kata, Sreelakshmi</creatorcontrib><creatorcontrib>Ganganapalli, Sarojamma</creatorcontrib><creatorcontrib>Kuppalapalle, Vajravelu</creatorcontrib><collection>CrossRef</collection><jtitle>Heat transfer (Hoboken, N.J. Print)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kata, Sreelakshmi</au><au>Ganganapalli, Sarojamma</au><au>Kuppalapalle, Vajravelu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transport of thermal energy in the magnetohydrodynamic oblique stagnation point flow in a hybrid nanofluid with nanoparticle shape effect</atitle><jtitle>Heat transfer (Hoboken, N.J. Print)</jtitle><date>2022-07</date><risdate>2022</risdate><volume>51</volume><issue>5</issue><spage>4331</spage><epage>4348</epage><pages>4331-4348</pages><issn>2688-4534</issn><eissn>2688-4542</eissn><abstract>In the present paper, the augmented heat characteristics of a hybrid nanofluid which is a blend of Al2O3 (alumina) and Ag (silver) in the host hybrid fluid (C2H6O2‐H2O) (50%–50%) impinging obliquely on an elastic surface with magnetic lines of force are investigated. The properties of the nanofluid are assessed through the computational solutions established with the aid of the popular Runge–Kutta–Fehlberg fifth‐order (RKF 5) numerical technique. Outputs of the analysis reveal that the rate of thermal energy transport in the hybrid (mono) nanofluid is enhanced by 11.5% (5.8%) by using blade‐shaped nanoparticles in comparison to that of the spherical particles. Stream contours of both nanofluids are inclined to the left (right) of the stagnation‐point for positive (negative) values of the stagnation flow parameter.</abstract><doi>10.1002/htj.22502</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-4656-8083</orcidid><orcidid>https://orcid.org/0000-0001-7164-5955</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2688-4534
ispartof Heat transfer (Hoboken, N.J. Print), 2022-07, Vol.51 (5), p.4331-4348
issn 2688-4534
2688-4542
language eng
recordid cdi_crossref_primary_10_1002_htj_22502
source Wiley
subjects hybrid nanofluid
MHD
oblique stagnation point flow
shape factor
stream contours
title Transport of thermal energy in the magnetohydrodynamic oblique stagnation point flow in a hybrid nanofluid with nanoparticle shape effect
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A56%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transport%20of%20thermal%20energy%20in%20the%20magnetohydrodynamic%20oblique%20stagnation%20point%20flow%20in%20a%20hybrid%20nanofluid%20with%20nanoparticle%20shape%20effect&rft.jtitle=Heat%20transfer%20(Hoboken,%20N.J.%20Print)&rft.au=Kata,%20Sreelakshmi&rft.date=2022-07&rft.volume=51&rft.issue=5&rft.spage=4331&rft.epage=4348&rft.pages=4331-4348&rft.issn=2688-4534&rft.eissn=2688-4542&rft_id=info:doi/10.1002/htj.22502&rft_dat=%3Cwiley_cross%3EHTJ22502%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2292-521cc5eb26cc242f86b824196d396086a3445b04d07b1a8be99ee1f3d29392bf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true