Loading…

Tree structure generation from ensemble forecasts for real time control

This paper presents a new methodology to generate a tree from an ensemble. The reason to generate a tree is to use the ensemble in multistage stochastic programming. A correct tree structure is of critical importance because it strongly affects the performance of the optimization. A tree, in contras...

Full description

Saved in:
Bibliographic Details
Published in:Hydrological processes 2013-01, Vol.27 (1), p.75-82
Main Authors: Raso, L., van de Giesen, N., Stive, P., Schwanenberg, D., van Overloop, P. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a new methodology to generate a tree from an ensemble. The reason to generate a tree is to use the ensemble in multistage stochastic programming. A correct tree structure is of critical importance because it strongly affects the performance of the optimization. A tree, in contrast to an ensemble, specifies when its trajectories diverge from each other. A tree can be generated from the ensemble data by aggregating trajectories over time until the difference between them becomes such that they can no longer be assumed to be similar, at such a point, the tree branches. The proposed method models the information flow: it takes into account which observations will become available, at which moment, and their level of uncertainty, i.e. their probability distributions (pdf). No conditions are imposed on those distributions. The method is well suited to trajectories that are close to each other at the beginning of the forecasting horizon and spread out going on in time, as ensemble forecasts typically are. Copyright © 2012 John Wiley & Sons, Ltd.
ISSN:0885-6087
1099-1085
DOI:10.1002/hyp.9473