Loading…

5α‐Reductase type 2 gene variant associations with prostate cancer risk, circulating hormone levels and androgenetic alopecia

Controversy exists over the significance of associations between the SRD5A2 (5α‐reductase type 2) polymorphisms, A49T and V89L, and risk of prostate cancer. These potentially functional polymorphisms may alter life‐long exposure to androgens with subsequent effects on male health and aging. The aim...

Full description

Saved in:
Bibliographic Details
Published in:International journal of cancer 2007-02, Vol.120 (4), p.776-780
Main Authors: Hayes, Vanessa M., Severi, Gianluca, Padilla, Emma J.D., Morris, Howard A., Tilley, Wayne D., Southey, Melissa C., English, Dallas R., Sutherland, Robert L., Hopper, John L., Boyle, Peter, Giles, Graham G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Controversy exists over the significance of associations between the SRD5A2 (5α‐reductase type 2) polymorphisms, A49T and V89L, and risk of prostate cancer. These potentially functional polymorphisms may alter life‐long exposure to androgens with subsequent effects on male health and aging. The aim of this study was to examine the association of these variants with prostate cancer risk, plasma hormone levels and androgenetic alopecia. Subjects include 827 cases and 736 controls from an Australian population‐based case–control study of prostate cancer. Information on prostate cancer risk factors and patterns of balding were collected. Plasma levels of testosterone, 3α‐diol glucuronide (3α‐diolG), dehydroepiandrosterone sulfate, androstenedione, sex hormone‐binding globulin and estradiol were measured for controls. No associations with the V89L polymorphism were found. Carriers of the rarer A49T A allele were at a 60% higher risk of prostate cancer (OR = 1.60; 95% CI 1.09–2.36; p = 0.02) and 50% lower risk of vertex and frontal balding (p = 0.03) compared with men homozygous for the more common G allele. Although we found little evidence of association between this variant and plasma levels of 5 measured androgens, circulating 3α‐diolG levels were 34% lower in A49T A allele carriers (p < 0.0001). Our study provides evidence that the SRD5A2 A49T A variant is associated with an increased risk of prostate cancer, lower levels of circulating 3α‐diolG and decreased risk of baldness. These findings raise important questions with respect to previous assumptions concerning hormonal influences on prostate cancer risk in ageing males. © 2006 Wiley‐Liss, Inc.
ISSN:0020-7136
1097-0215
DOI:10.1002/ijc.22408