Loading…
Dispersive Micro Solid-phase Extraction Coupled with Ultrasound-assisted Solvent Desorption for Determination of Synthetic Polycyclic and Nitro-aromatic Musks in Aqueous Samples
An optimized method for the determination of five synthetic polycyclic: celestolide (ADBI), phantolide (AHMI), traseolide (ATII), galaxolide (HHCB), tonalide (AHTN), and two nitro‐aromatic musks: musk xylene (MX) and musk ketone (MK), in water samples is described. The method involves a dispersive m...
Saved in:
Published in: | Journal of the Chinese Chemical Society (Taipei) 2014-09, Vol.61 (9), p.1031-1038 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An optimized method for the determination of five synthetic polycyclic: celestolide (ADBI), phantolide (AHMI), traseolide (ATII), galaxolide (HHCB), tonalide (AHTN), and two nitro‐aromatic musks: musk xylene (MX) and musk ketone (MK), in water samples is described. The method involves a dispersive micro solid‐phase extraction (D‐μ‐SPE) plus ultrasound‐assisted solvent desorption (UASD) prior to their determination by gas chromatography‐mass spectrometry (GC‐MS) using the selected ion storage (SIS) mode. Factors affecting the extraction efficiency of the target analytes from water samples and ultrasound‐assisted solvent desorption were optimized by a Box‐Behnken design method. The optimal extraction conditions involved immersing 10.1 mg of a typical octadecyl (C18) bonded silica adsorbent (i.e., ENVI‐18) in a 50 mL water sample. After 10.4 min of extraction by vigorously shaking, the adsorbent was collected and dried on a filter, and the target musks were desorbed by ultrasound‐assisted for 38 sec with n‐hexane (200 μL) as the desorption solvent. A 10 μL aliquot was then directly determined by large‐volume injection GC‐MS. The limits of quantitation (LOQs) were 1.2 to 5 ng/L. The precision for these analytes, as indicated by relative standard deviations (RSDs), were less than 11% for both intra‐ and inter‐day analysis. Accuracy, expressed as the mean extraction recovery, was between 74% and 92%. A preliminary analysis of the effluents from municipal wastewater treatment plants (MWTP) and river water samples revealed that HHCB and AHTN were the two most commonly detected synthetic musks; their concentration were determined to range from 88 to 690 ng/L for effluent samples, and 5 to 320 ng/L for river water samples. This is a simple, low cost, effective, and eco‐friendly analytical method.
A simple and reliable D‐μ‐SPE plus UASD method was developed and optimized to quantitatively determine seven commonly used synthetic musks in environmental aqueous samples. This method does not require the acquisition of dedicated instrumentation and low volumes of organic solvents are used, it is easy and rapid, thus making it a candidate for use in routine analysis in monitoring programs. |
---|---|
ISSN: | 0009-4536 2192-6549 |
DOI: | 10.1002/jccs.201300666 |