Loading…

A system of equations for describing cocyclic Hadamard matrices

Given a basis ${\cal B} = \{f_1,\ldots, f_k\}$ for 2‐cocycles $f:G \times G \rightarrow \{\pm 1\}$ over a group G of order $\vert G\vert=4t$, we describe a nonlinear system of 4t‐1 equations and k indeterminates $x_i$ over ${\cal Z}_2, 1\leq i \leq k$, whose solutions determine the whole set of cocy...

Full description

Saved in:
Bibliographic Details
Published in:Journal of combinatorial designs 2008-07, Vol.16 (4), p.276-290
Main Authors: Álvarez, V., Armario, J. A., Frau, M. D., Real, P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3421-d6c309693c7df1470fc86ad0c2f0233c5be01dff85952706362aa5876400a5393
cites cdi_FETCH-LOGICAL-c3421-d6c309693c7df1470fc86ad0c2f0233c5be01dff85952706362aa5876400a5393
container_end_page 290
container_issue 4
container_start_page 276
container_title Journal of combinatorial designs
container_volume 16
creator Álvarez, V.
Armario, J. A.
Frau, M. D.
Real, P.
description Given a basis ${\cal B} = \{f_1,\ldots, f_k\}$ for 2‐cocycles $f:G \times G \rightarrow \{\pm 1\}$ over a group G of order $\vert G\vert=4t$, we describe a nonlinear system of 4t‐1 equations and k indeterminates $x_i$ over ${\cal Z}_2, 1\leq i \leq k$, whose solutions determine the whole set of cocyclic Hadamard matrices over G, in the sense that ($x_1,\ldots ,x_k$) is a solution of the system if and only if the 2‐cocycle $f=f_1^{x_1}\cdots f_k^{x_k}$ gives rise to a cocyclic Hadamard matrix $M_f=(f(g_i,g_j))$. Furthermore, the study of any isolated equation of the system provides upper and lower bounds on the number of coboundary generators in ${\cal B}$ which have to be combined to form a cocyclic Hadamard matrix coming from a special class of cocycles. We include some results on the families of groups ${\cal Z}_2^2 \times {\cal Z}_t$ and $D_{4t}$. A deeper study of the system provides some more nice properties. For instance, in the case of dihedral groups $D_{4t}$, we have found that it suffices to check t instead of the 4t rows of $M_f$, to decide the Hadamard character of the matrix (for a special class of cocycles f). © 2008 Wiley Periodicals, Inc. J Combin Designs 16: 276–290, 2008
doi_str_mv 10.1002/jcd.20191
format article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_jcd_20191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JCD20191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3421-d6c309693c7df1470fc86ad0c2f0233c5be01dff85952706362aa5876400a5393</originalsourceid><addsrcrecordid>eNp1kE1PAjEQhhujiYge_Ae9eliZtrS7PRmyCqjEr2BMvDSlH6YIrLYY3X9vFfXmaebwPJP3HYQOCRwTANqbG3tMgUiyhTqEUyiEILCddxCsqDiTu2gvpTkASMlEB50McGrT2i1x47F7fdPr0KwS9k3E1iUTwyysnrBpTGsWweCxtnqpo8VLvY7BuLSPdrxeJHfwM7vofng2rcfF5Hp0Xg8mhWF9SgorDAMpJDOl9aRfgjeV0BYM9UAZM3zmgFjvKy45LXNWQbXmVSn6ADqnZl10tLlrYpNSdF69xJCTtIqA-mqucnP13TyzvQ37Hhau_R9UF_Xpr1FsjJBf8fFn6PisRMlKrh6uRmp6efs4rW-G6o59Aic2aIo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A system of equations for describing cocyclic Hadamard matrices</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Álvarez, V. ; Armario, J. A. ; Frau, M. D. ; Real, P.</creator><creatorcontrib>Álvarez, V. ; Armario, J. A. ; Frau, M. D. ; Real, P.</creatorcontrib><description>Given a basis ${\cal B} = \{f_1,\ldots, f_k\}$ for 2‐cocycles $f:G \times G \rightarrow \{\pm 1\}$ over a group G of order $\vert G\vert=4t$, we describe a nonlinear system of 4t‐1 equations and k indeterminates $x_i$ over ${\cal Z}_2, 1\leq i \leq k$, whose solutions determine the whole set of cocyclic Hadamard matrices over G, in the sense that ($x_1,\ldots ,x_k$) is a solution of the system if and only if the 2‐cocycle $f=f_1^{x_1}\cdots f_k^{x_k}$ gives rise to a cocyclic Hadamard matrix $M_f=(f(g_i,g_j))$. Furthermore, the study of any isolated equation of the system provides upper and lower bounds on the number of coboundary generators in ${\cal B}$ which have to be combined to form a cocyclic Hadamard matrix coming from a special class of cocycles. We include some results on the families of groups ${\cal Z}_2^2 \times {\cal Z}_t$ and $D_{4t}$. A deeper study of the system provides some more nice properties. For instance, in the case of dihedral groups $D_{4t}$, we have found that it suffices to check t instead of the 4t rows of $M_f$, to decide the Hadamard character of the matrix (for a special class of cocycles f). © 2008 Wiley Periodicals, Inc. J Combin Designs 16: 276–290, 2008</description><identifier>ISSN: 1063-8539</identifier><identifier>EISSN: 1520-6610</identifier><identifier>DOI: 10.1002/jcd.20191</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>coboundary matrix ; cocyclic matrix ; Hadamard matrix</subject><ispartof>Journal of combinatorial designs, 2008-07, Vol.16 (4), p.276-290</ispartof><rights>Copyright © 2008 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3421-d6c309693c7df1470fc86ad0c2f0233c5be01dff85952706362aa5876400a5393</citedby><cites>FETCH-LOGICAL-c3421-d6c309693c7df1470fc86ad0c2f0233c5be01dff85952706362aa5876400a5393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Álvarez, V.</creatorcontrib><creatorcontrib>Armario, J. A.</creatorcontrib><creatorcontrib>Frau, M. D.</creatorcontrib><creatorcontrib>Real, P.</creatorcontrib><title>A system of equations for describing cocyclic Hadamard matrices</title><title>Journal of combinatorial designs</title><addtitle>J. Combin. Designs</addtitle><description>Given a basis ${\cal B} = \{f_1,\ldots, f_k\}$ for 2‐cocycles $f:G \times G \rightarrow \{\pm 1\}$ over a group G of order $\vert G\vert=4t$, we describe a nonlinear system of 4t‐1 equations and k indeterminates $x_i$ over ${\cal Z}_2, 1\leq i \leq k$, whose solutions determine the whole set of cocyclic Hadamard matrices over G, in the sense that ($x_1,\ldots ,x_k$) is a solution of the system if and only if the 2‐cocycle $f=f_1^{x_1}\cdots f_k^{x_k}$ gives rise to a cocyclic Hadamard matrix $M_f=(f(g_i,g_j))$. Furthermore, the study of any isolated equation of the system provides upper and lower bounds on the number of coboundary generators in ${\cal B}$ which have to be combined to form a cocyclic Hadamard matrix coming from a special class of cocycles. We include some results on the families of groups ${\cal Z}_2^2 \times {\cal Z}_t$ and $D_{4t}$. A deeper study of the system provides some more nice properties. For instance, in the case of dihedral groups $D_{4t}$, we have found that it suffices to check t instead of the 4t rows of $M_f$, to decide the Hadamard character of the matrix (for a special class of cocycles f). © 2008 Wiley Periodicals, Inc. J Combin Designs 16: 276–290, 2008</description><subject>coboundary matrix</subject><subject>cocyclic matrix</subject><subject>Hadamard matrix</subject><issn>1063-8539</issn><issn>1520-6610</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PAjEQhhujiYge_Ae9eliZtrS7PRmyCqjEr2BMvDSlH6YIrLYY3X9vFfXmaebwPJP3HYQOCRwTANqbG3tMgUiyhTqEUyiEILCddxCsqDiTu2gvpTkASMlEB50McGrT2i1x47F7fdPr0KwS9k3E1iUTwyysnrBpTGsWweCxtnqpo8VLvY7BuLSPdrxeJHfwM7vofng2rcfF5Hp0Xg8mhWF9SgorDAMpJDOl9aRfgjeV0BYM9UAZM3zmgFjvKy45LXNWQbXmVSn6ADqnZl10tLlrYpNSdF69xJCTtIqA-mqucnP13TyzvQ37Hhau_R9UF_Xpr1FsjJBf8fFn6PisRMlKrh6uRmp6efs4rW-G6o59Aic2aIo</recordid><startdate>200807</startdate><enddate>200807</enddate><creator>Álvarez, V.</creator><creator>Armario, J. A.</creator><creator>Frau, M. D.</creator><creator>Real, P.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200807</creationdate><title>A system of equations for describing cocyclic Hadamard matrices</title><author>Álvarez, V. ; Armario, J. A. ; Frau, M. D. ; Real, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3421-d6c309693c7df1470fc86ad0c2f0233c5be01dff85952706362aa5876400a5393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>coboundary matrix</topic><topic>cocyclic matrix</topic><topic>Hadamard matrix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Álvarez, V.</creatorcontrib><creatorcontrib>Armario, J. A.</creatorcontrib><creatorcontrib>Frau, M. D.</creatorcontrib><creatorcontrib>Real, P.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of combinatorial designs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Álvarez, V.</au><au>Armario, J. A.</au><au>Frau, M. D.</au><au>Real, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A system of equations for describing cocyclic Hadamard matrices</atitle><jtitle>Journal of combinatorial designs</jtitle><addtitle>J. Combin. Designs</addtitle><date>2008-07</date><risdate>2008</risdate><volume>16</volume><issue>4</issue><spage>276</spage><epage>290</epage><pages>276-290</pages><issn>1063-8539</issn><eissn>1520-6610</eissn><abstract>Given a basis ${\cal B} = \{f_1,\ldots, f_k\}$ for 2‐cocycles $f:G \times G \rightarrow \{\pm 1\}$ over a group G of order $\vert G\vert=4t$, we describe a nonlinear system of 4t‐1 equations and k indeterminates $x_i$ over ${\cal Z}_2, 1\leq i \leq k$, whose solutions determine the whole set of cocyclic Hadamard matrices over G, in the sense that ($x_1,\ldots ,x_k$) is a solution of the system if and only if the 2‐cocycle $f=f_1^{x_1}\cdots f_k^{x_k}$ gives rise to a cocyclic Hadamard matrix $M_f=(f(g_i,g_j))$. Furthermore, the study of any isolated equation of the system provides upper and lower bounds on the number of coboundary generators in ${\cal B}$ which have to be combined to form a cocyclic Hadamard matrix coming from a special class of cocycles. We include some results on the families of groups ${\cal Z}_2^2 \times {\cal Z}_t$ and $D_{4t}$. A deeper study of the system provides some more nice properties. For instance, in the case of dihedral groups $D_{4t}$, we have found that it suffices to check t instead of the 4t rows of $M_f$, to decide the Hadamard character of the matrix (for a special class of cocycles f). © 2008 Wiley Periodicals, Inc. J Combin Designs 16: 276–290, 2008</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/jcd.20191</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1063-8539
ispartof Journal of combinatorial designs, 2008-07, Vol.16 (4), p.276-290
issn 1063-8539
1520-6610
language eng
recordid cdi_crossref_primary_10_1002_jcd_20191
source Wiley-Blackwell Read & Publish Collection
subjects coboundary matrix
cocyclic matrix
Hadamard matrix
title A system of equations for describing cocyclic Hadamard matrices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A37%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20system%20of%20equations%20for%20describing%20cocyclic%20Hadamard%20matrices&rft.jtitle=Journal%20of%20combinatorial%20designs&rft.au=%C3%81lvarez,%20V.&rft.date=2008-07&rft.volume=16&rft.issue=4&rft.spage=276&rft.epage=290&rft.pages=276-290&rft.issn=1063-8539&rft.eissn=1520-6610&rft_id=info:doi/10.1002/jcd.20191&rft_dat=%3Cwiley_cross%3EJCD20191%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3421-d6c309693c7df1470fc86ad0c2f0233c5be01dff85952706362aa5876400a5393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true