Loading…

Packing of graphic n-tuples

An n‐tuple π (not necessarily monotone) is graphic if there is a simple graph G with vertex set {v1, …, vn} in which the degree of vi is the ith entry of π. Graphic n‐tuples (d (1)1, …, d (1)n) and (d (2)1, …, d (2)n) pack if there are edge‐disjoint n‐vertex graphs G1 and G2 such that d G 1(vi) = d ...

Full description

Saved in:
Bibliographic Details
Published in:Journal of graph theory 2012-05, Vol.70 (1), p.29-39
Main Authors: Busch, Arthur H., Ferrara, Michael J., Hartke, Stephen G., Jacobson, Michael S., Kaul, Hemanshu, West, Douglas B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3428-5d8677da0789e677e20b8064dad3c3618483f41c78aff47c5e0bd9fcbf6c31923
cites cdi_FETCH-LOGICAL-c3428-5d8677da0789e677e20b8064dad3c3618483f41c78aff47c5e0bd9fcbf6c31923
container_end_page 39
container_issue 1
container_start_page 29
container_title Journal of graph theory
container_volume 70
creator Busch, Arthur H.
Ferrara, Michael J.
Hartke, Stephen G.
Jacobson, Michael S.
Kaul, Hemanshu
West, Douglas B.
description An n‐tuple π (not necessarily monotone) is graphic if there is a simple graph G with vertex set {v1, …, vn} in which the degree of vi is the ith entry of π. Graphic n‐tuples (d (1)1, …, d (1)n) and (d (2)1, …, d (2)n) pack if there are edge‐disjoint n‐vertex graphs G1 and G2 such that d G 1(vi) = d (1)i and d G 2(vi) = d (2)i for all i. We prove that graphic n‐tuples π1 and π2 pack if , where Δand δdenote the largest and smallest entries in π1 + π2 (strict inequality when δ = 1); also, the bound is sharp. Kundu and Lovász independently proved that a graphic n‐tuple π is realized by a graph with a k‐factor if the n‐tuple obtained by subtracting k from each entry of π is graphic; for even n we conjecture that in fact some realization has k edge‐disjoint 1‐factors. We prove the conjecture in the case where the largest entry of π is at most n/2 + 1 and also when k⩽3. © 2011 Wiley Periodicals, Inc. J Graph Theory
doi_str_mv 10.1002/jgt.20598
format article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_jgt_20598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JGT20598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3428-5d8677da0789e677e20b8064dad3c3618483f41c78aff47c5e0bd9fcbf6c31923</originalsourceid><addsrcrecordid>eNp1jz1PwzAQQC0EEqEwMLNkZXB7_kjsjCiCAC0FpFJGy3HskDa0URwE_fcEAmxMdzq9d9JD6JTAmADQyarsxhSiRO6hgEAiMBAi91EALOY4AcoP0ZH3K-jPEcgAnT1os642Zbh1Ydnq5qUy4QZ3b01t_TE6cLr29uRnjtDT1eUivcaz--wmvZhhwziVOCpkLEShQcjE9pulkEuIeaELZlhMJJfMcWKE1M5xYSILeZE4k7vYMJJQNkLnw1_Tbr1vrVNNW73qdqcIqK8q1Vep76qenQzse1Xb3f-gus0WvwYejMp39uPP0O1axYKJSD3PMzW9W6bL-SNVU_YJtIBb9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Packing of graphic n-tuples</title><source>Wiley</source><creator>Busch, Arthur H. ; Ferrara, Michael J. ; Hartke, Stephen G. ; Jacobson, Michael S. ; Kaul, Hemanshu ; West, Douglas B.</creator><creatorcontrib>Busch, Arthur H. ; Ferrara, Michael J. ; Hartke, Stephen G. ; Jacobson, Michael S. ; Kaul, Hemanshu ; West, Douglas B.</creatorcontrib><description>An n‐tuple π (not necessarily monotone) is graphic if there is a simple graph G with vertex set {v1, …, vn} in which the degree of vi is the ith entry of π. Graphic n‐tuples (d (1)1, …, d (1)n) and (d (2)1, …, d (2)n) pack if there are edge‐disjoint n‐vertex graphs G1 and G2 such that d G 1(vi) = d (1)i and d G 2(vi) = d (2)i for all i. We prove that graphic n‐tuples π1 and π2 pack if , where Δand δdenote the largest and smallest entries in π1 + π2 (strict inequality when δ = 1); also, the bound is sharp. Kundu and Lovász independently proved that a graphic n‐tuple π is realized by a graph with a k‐factor if the n‐tuple obtained by subtracting k from each entry of π is graphic; for even n we conjecture that in fact some realization has k edge‐disjoint 1‐factors. We prove the conjecture in the case where the largest entry of π is at most n/2 + 1 and also when k⩽3. © 2011 Wiley Periodicals, Inc. J Graph Theory</description><identifier>ISSN: 0364-9024</identifier><identifier>EISSN: 1097-0118</identifier><identifier>DOI: 10.1002/jgt.20598</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>1-factor ; degree sequence ; graph packing ; graphic sequence ; k-factor</subject><ispartof>Journal of graph theory, 2012-05, Vol.70 (1), p.29-39</ispartof><rights>2011 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3428-5d8677da0789e677e20b8064dad3c3618483f41c78aff47c5e0bd9fcbf6c31923</citedby><cites>FETCH-LOGICAL-c3428-5d8677da0789e677e20b8064dad3c3618483f41c78aff47c5e0bd9fcbf6c31923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Busch, Arthur H.</creatorcontrib><creatorcontrib>Ferrara, Michael J.</creatorcontrib><creatorcontrib>Hartke, Stephen G.</creatorcontrib><creatorcontrib>Jacobson, Michael S.</creatorcontrib><creatorcontrib>Kaul, Hemanshu</creatorcontrib><creatorcontrib>West, Douglas B.</creatorcontrib><title>Packing of graphic n-tuples</title><title>Journal of graph theory</title><addtitle>J. Graph Theory</addtitle><description>An n‐tuple π (not necessarily monotone) is graphic if there is a simple graph G with vertex set {v1, …, vn} in which the degree of vi is the ith entry of π. Graphic n‐tuples (d (1)1, …, d (1)n) and (d (2)1, …, d (2)n) pack if there are edge‐disjoint n‐vertex graphs G1 and G2 such that d G 1(vi) = d (1)i and d G 2(vi) = d (2)i for all i. We prove that graphic n‐tuples π1 and π2 pack if , where Δand δdenote the largest and smallest entries in π1 + π2 (strict inequality when δ = 1); also, the bound is sharp. Kundu and Lovász independently proved that a graphic n‐tuple π is realized by a graph with a k‐factor if the n‐tuple obtained by subtracting k from each entry of π is graphic; for even n we conjecture that in fact some realization has k edge‐disjoint 1‐factors. We prove the conjecture in the case where the largest entry of π is at most n/2 + 1 and also when k⩽3. © 2011 Wiley Periodicals, Inc. J Graph Theory</description><subject>1-factor</subject><subject>degree sequence</subject><subject>graph packing</subject><subject>graphic sequence</subject><subject>k-factor</subject><issn>0364-9024</issn><issn>1097-0118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1jz1PwzAQQC0EEqEwMLNkZXB7_kjsjCiCAC0FpFJGy3HskDa0URwE_fcEAmxMdzq9d9JD6JTAmADQyarsxhSiRO6hgEAiMBAi91EALOY4AcoP0ZH3K-jPEcgAnT1os642Zbh1Ydnq5qUy4QZ3b01t_TE6cLr29uRnjtDT1eUivcaz--wmvZhhwziVOCpkLEShQcjE9pulkEuIeaELZlhMJJfMcWKE1M5xYSILeZE4k7vYMJJQNkLnw1_Tbr1vrVNNW73qdqcIqK8q1Vep76qenQzse1Xb3f-gus0WvwYejMp39uPP0O1axYKJSD3PMzW9W6bL-SNVU_YJtIBb9Q</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Busch, Arthur H.</creator><creator>Ferrara, Michael J.</creator><creator>Hartke, Stephen G.</creator><creator>Jacobson, Michael S.</creator><creator>Kaul, Hemanshu</creator><creator>West, Douglas B.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201205</creationdate><title>Packing of graphic n-tuples</title><author>Busch, Arthur H. ; Ferrara, Michael J. ; Hartke, Stephen G. ; Jacobson, Michael S. ; Kaul, Hemanshu ; West, Douglas B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3428-5d8677da0789e677e20b8064dad3c3618483f41c78aff47c5e0bd9fcbf6c31923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>1-factor</topic><topic>degree sequence</topic><topic>graph packing</topic><topic>graphic sequence</topic><topic>k-factor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Busch, Arthur H.</creatorcontrib><creatorcontrib>Ferrara, Michael J.</creatorcontrib><creatorcontrib>Hartke, Stephen G.</creatorcontrib><creatorcontrib>Jacobson, Michael S.</creatorcontrib><creatorcontrib>Kaul, Hemanshu</creatorcontrib><creatorcontrib>West, Douglas B.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of graph theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Busch, Arthur H.</au><au>Ferrara, Michael J.</au><au>Hartke, Stephen G.</au><au>Jacobson, Michael S.</au><au>Kaul, Hemanshu</au><au>West, Douglas B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Packing of graphic n-tuples</atitle><jtitle>Journal of graph theory</jtitle><addtitle>J. Graph Theory</addtitle><date>2012-05</date><risdate>2012</risdate><volume>70</volume><issue>1</issue><spage>29</spage><epage>39</epage><pages>29-39</pages><issn>0364-9024</issn><eissn>1097-0118</eissn><abstract>An n‐tuple π (not necessarily monotone) is graphic if there is a simple graph G with vertex set {v1, …, vn} in which the degree of vi is the ith entry of π. Graphic n‐tuples (d (1)1, …, d (1)n) and (d (2)1, …, d (2)n) pack if there are edge‐disjoint n‐vertex graphs G1 and G2 such that d G 1(vi) = d (1)i and d G 2(vi) = d (2)i for all i. We prove that graphic n‐tuples π1 and π2 pack if , where Δand δdenote the largest and smallest entries in π1 + π2 (strict inequality when δ = 1); also, the bound is sharp. Kundu and Lovász independently proved that a graphic n‐tuple π is realized by a graph with a k‐factor if the n‐tuple obtained by subtracting k from each entry of π is graphic; for even n we conjecture that in fact some realization has k edge‐disjoint 1‐factors. We prove the conjecture in the case where the largest entry of π is at most n/2 + 1 and also when k⩽3. © 2011 Wiley Periodicals, Inc. J Graph Theory</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1002/jgt.20598</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0364-9024
ispartof Journal of graph theory, 2012-05, Vol.70 (1), p.29-39
issn 0364-9024
1097-0118
language eng
recordid cdi_crossref_primary_10_1002_jgt_20598
source Wiley
subjects 1-factor
degree sequence
graph packing
graphic sequence
k-factor
title Packing of graphic n-tuples
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A53%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Packing%20of%20graphic%20n-tuples&rft.jtitle=Journal%20of%20graph%20theory&rft.au=Busch,%20Arthur%20H.&rft.date=2012-05&rft.volume=70&rft.issue=1&rft.spage=29&rft.epage=39&rft.pages=29-39&rft.issn=0364-9024&rft.eissn=1097-0118&rft_id=info:doi/10.1002/jgt.20598&rft_dat=%3Cwiley_cross%3EJGT20598%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3428-5d8677da0789e677e20b8064dad3c3618483f41c78aff47c5e0bd9fcbf6c31923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true