Loading…
Unretractive and S-unretractive joins and lexicographic products of graphs
Graphs without proper endomorphisms are the subject of this article. It is shown that the join of two graphs has this property if and only if both summands have it, and that the lexicographic product of a complete graph or an odd circuit as first factors has this property if and only if the second f...
Saved in:
Published in: | Journal of graph theory 1987-09, Vol.11 (3), p.429-440 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3566-6976edf972d48b72bac75bede5f0f987145f8be134e650cd1d159d317ad15d503 |
---|---|
cites | cdi_FETCH-LOGICAL-c3566-6976edf972d48b72bac75bede5f0f987145f8be134e650cd1d159d317ad15d503 |
container_end_page | 440 |
container_issue | 3 |
container_start_page | 429 |
container_title | Journal of graph theory |
container_volume | 11 |
creator | Knauer, Ulrich |
description | Graphs without proper endomorphisms are the subject of this article. It is shown that the join of two graphs has this property if and only if both summands have it, and that the lexicographic product of a complete graph or an odd circuit as first factors has this property if and only if the second factor has it. A somewhat stronger theorem is proved if the lexicographic product has no proper strong endomorphism. The corresponding result for the join is the same as for usual endomorphisms. |
doi_str_mv | 10.1002/jgt.3190110316 |
format | article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_jgt_3190110316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JGT3190110316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3566-6976edf972d48b72bac75bede5f0f987145f8be134e650cd1d159d317ad15d503</originalsourceid><addsrcrecordid>eNqFkL1PwzAQxS0EEqWwMmdgTbHj2I5HVEGhasvQVrBZjj-KS0giO4X2vyc0qMDEdHfv7vdOegBcIjhAECbX61UzwIhDhCBG9Aj0EOQsbsfsGPQgpmnMYZKegrMQ1rCVCcx6YLwsvWm8VI17N5EsdTSPN7-ldeXKsF8UZutUtfKyfnEqqn2lN6oJUWWjvRbOwYmVRTAX37UPlne3i-F9PHkcPQxvJrHChNKYckaNtpwlOs1yluRSMZIbbYiFlmcMpcRmuUE4NZRApZFGhGuMmGwbTSDug0Hnq3wVgjdW1N69Sb8TCIqvJESbhPhJogWuOqCWQcnCelkqFw4UwzyDHLdnvDv7cIXZ_WMqxqPFnxdxx7rQmO2Blf5VUIYZEU-zkZilfD57nk_FFH8CtXd--g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Unretractive and S-unretractive joins and lexicographic products of graphs</title><source>Wiley Online Library Mathematics Backfiles</source><creator>Knauer, Ulrich</creator><creatorcontrib>Knauer, Ulrich</creatorcontrib><description>Graphs without proper endomorphisms are the subject of this article. It is shown that the join of two graphs has this property if and only if both summands have it, and that the lexicographic product of a complete graph or an odd circuit as first factors has this property if and only if the second factor has it. A somewhat stronger theorem is proved if the lexicographic product has no proper strong endomorphism. The corresponding result for the join is the same as for usual endomorphisms.</description><identifier>ISSN: 0364-9024</identifier><identifier>EISSN: 1097-0118</identifier><identifier>DOI: 10.1002/jgt.3190110316</identifier><identifier>CODEN: JGTHDO</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Combinatorics ; Combinatorics. Ordered structures ; Exact sciences and technology ; Graph theory ; Mathematics ; Sciences and techniques of general use</subject><ispartof>Journal of graph theory, 1987-09, Vol.11 (3), p.429-440</ispartof><rights>Copyright © 1987 Wiley Periodicals, Inc., A Wiley Company</rights><rights>1988 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3566-6976edf972d48b72bac75bede5f0f987145f8be134e650cd1d159d317ad15d503</citedby><cites>FETCH-LOGICAL-c3566-6976edf972d48b72bac75bede5f0f987145f8be134e650cd1d159d317ad15d503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjgt.3190110316$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjgt.3190110316$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,50840,50949</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7398093$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Knauer, Ulrich</creatorcontrib><title>Unretractive and S-unretractive joins and lexicographic products of graphs</title><title>Journal of graph theory</title><addtitle>J. Graph Theory</addtitle><description>Graphs without proper endomorphisms are the subject of this article. It is shown that the join of two graphs has this property if and only if both summands have it, and that the lexicographic product of a complete graph or an odd circuit as first factors has this property if and only if the second factor has it. A somewhat stronger theorem is proved if the lexicographic product has no proper strong endomorphism. The corresponding result for the join is the same as for usual endomorphisms.</description><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Exact sciences and technology</subject><subject>Graph theory</subject><subject>Mathematics</subject><subject>Sciences and techniques of general use</subject><issn>0364-9024</issn><issn>1097-0118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNqFkL1PwzAQxS0EEqWwMmdgTbHj2I5HVEGhasvQVrBZjj-KS0giO4X2vyc0qMDEdHfv7vdOegBcIjhAECbX61UzwIhDhCBG9Aj0EOQsbsfsGPQgpmnMYZKegrMQ1rCVCcx6YLwsvWm8VI17N5EsdTSPN7-ldeXKsF8UZutUtfKyfnEqqn2lN6oJUWWjvRbOwYmVRTAX37UPlne3i-F9PHkcPQxvJrHChNKYckaNtpwlOs1yluRSMZIbbYiFlmcMpcRmuUE4NZRApZFGhGuMmGwbTSDug0Hnq3wVgjdW1N69Sb8TCIqvJESbhPhJogWuOqCWQcnCelkqFw4UwzyDHLdnvDv7cIXZ_WMqxqPFnxdxx7rQmO2Blf5VUIYZEU-zkZilfD57nk_FFH8CtXd--g</recordid><startdate>19870901</startdate><enddate>19870901</enddate><creator>Knauer, Ulrich</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19870901</creationdate><title>Unretractive and S-unretractive joins and lexicographic products of graphs</title><author>Knauer, Ulrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3566-6976edf972d48b72bac75bede5f0f987145f8be134e650cd1d159d317ad15d503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Exact sciences and technology</topic><topic>Graph theory</topic><topic>Mathematics</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Knauer, Ulrich</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of graph theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Knauer, Ulrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unretractive and S-unretractive joins and lexicographic products of graphs</atitle><jtitle>Journal of graph theory</jtitle><addtitle>J. Graph Theory</addtitle><date>1987-09-01</date><risdate>1987</risdate><volume>11</volume><issue>3</issue><spage>429</spage><epage>440</epage><pages>429-440</pages><issn>0364-9024</issn><eissn>1097-0118</eissn><coden>JGTHDO</coden><abstract>Graphs without proper endomorphisms are the subject of this article. It is shown that the join of two graphs has this property if and only if both summands have it, and that the lexicographic product of a complete graph or an odd circuit as first factors has this property if and only if the second factor has it. A somewhat stronger theorem is proved if the lexicographic product has no proper strong endomorphism. The corresponding result for the join is the same as for usual endomorphisms.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/jgt.3190110316</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0364-9024 |
ispartof | Journal of graph theory, 1987-09, Vol.11 (3), p.429-440 |
issn | 0364-9024 1097-0118 |
language | eng |
recordid | cdi_crossref_primary_10_1002_jgt_3190110316 |
source | Wiley Online Library Mathematics Backfiles |
subjects | Combinatorics Combinatorics. Ordered structures Exact sciences and technology Graph theory Mathematics Sciences and techniques of general use |
title | Unretractive and S-unretractive joins and lexicographic products of graphs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A04%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unretractive%20and%20S-unretractive%20joins%20and%20lexicographic%20products%20of%20graphs&rft.jtitle=Journal%20of%20graph%20theory&rft.au=Knauer,%20Ulrich&rft.date=1987-09-01&rft.volume=11&rft.issue=3&rft.spage=429&rft.epage=440&rft.pages=429-440&rft.issn=0364-9024&rft.eissn=1097-0118&rft.coden=JGTHDO&rft_id=info:doi/10.1002/jgt.3190110316&rft_dat=%3Cwiley_cross%3EJGT3190110316%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3566-6976edf972d48b72bac75bede5f0f987145f8be134e650cd1d159d317ad15d503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |