Loading…

Unretractive and S-unretractive joins and lexicographic products of graphs

Graphs without proper endomorphisms are the subject of this article. It is shown that the join of two graphs has this property if and only if both summands have it, and that the lexicographic product of a complete graph or an odd circuit as first factors has this property if and only if the second f...

Full description

Saved in:
Bibliographic Details
Published in:Journal of graph theory 1987-09, Vol.11 (3), p.429-440
Main Author: Knauer, Ulrich
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3566-6976edf972d48b72bac75bede5f0f987145f8be134e650cd1d159d317ad15d503
cites cdi_FETCH-LOGICAL-c3566-6976edf972d48b72bac75bede5f0f987145f8be134e650cd1d159d317ad15d503
container_end_page 440
container_issue 3
container_start_page 429
container_title Journal of graph theory
container_volume 11
creator Knauer, Ulrich
description Graphs without proper endomorphisms are the subject of this article. It is shown that the join of two graphs has this property if and only if both summands have it, and that the lexicographic product of a complete graph or an odd circuit as first factors has this property if and only if the second factor has it. A somewhat stronger theorem is proved if the lexicographic product has no proper strong endomorphism. The corresponding result for the join is the same as for usual endomorphisms.
doi_str_mv 10.1002/jgt.3190110316
format article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_jgt_3190110316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JGT3190110316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3566-6976edf972d48b72bac75bede5f0f987145f8be134e650cd1d159d317ad15d503</originalsourceid><addsrcrecordid>eNqFkL1PwzAQxS0EEqWwMmdgTbHj2I5HVEGhasvQVrBZjj-KS0giO4X2vyc0qMDEdHfv7vdOegBcIjhAECbX61UzwIhDhCBG9Aj0EOQsbsfsGPQgpmnMYZKegrMQ1rCVCcx6YLwsvWm8VI17N5EsdTSPN7-ldeXKsF8UZutUtfKyfnEqqn2lN6oJUWWjvRbOwYmVRTAX37UPlne3i-F9PHkcPQxvJrHChNKYckaNtpwlOs1yluRSMZIbbYiFlmcMpcRmuUE4NZRApZFGhGuMmGwbTSDug0Hnq3wVgjdW1N69Sb8TCIqvJESbhPhJogWuOqCWQcnCelkqFw4UwzyDHLdnvDv7cIXZ_WMqxqPFnxdxx7rQmO2Blf5VUIYZEU-zkZilfD57nk_FFH8CtXd--g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Unretractive and S-unretractive joins and lexicographic products of graphs</title><source>Wiley Online Library Mathematics Backfiles</source><creator>Knauer, Ulrich</creator><creatorcontrib>Knauer, Ulrich</creatorcontrib><description>Graphs without proper endomorphisms are the subject of this article. It is shown that the join of two graphs has this property if and only if both summands have it, and that the lexicographic product of a complete graph or an odd circuit as first factors has this property if and only if the second factor has it. A somewhat stronger theorem is proved if the lexicographic product has no proper strong endomorphism. The corresponding result for the join is the same as for usual endomorphisms.</description><identifier>ISSN: 0364-9024</identifier><identifier>EISSN: 1097-0118</identifier><identifier>DOI: 10.1002/jgt.3190110316</identifier><identifier>CODEN: JGTHDO</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Combinatorics ; Combinatorics. Ordered structures ; Exact sciences and technology ; Graph theory ; Mathematics ; Sciences and techniques of general use</subject><ispartof>Journal of graph theory, 1987-09, Vol.11 (3), p.429-440</ispartof><rights>Copyright © 1987 Wiley Periodicals, Inc., A Wiley Company</rights><rights>1988 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3566-6976edf972d48b72bac75bede5f0f987145f8be134e650cd1d159d317ad15d503</citedby><cites>FETCH-LOGICAL-c3566-6976edf972d48b72bac75bede5f0f987145f8be134e650cd1d159d317ad15d503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjgt.3190110316$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjgt.3190110316$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,50840,50949</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7398093$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Knauer, Ulrich</creatorcontrib><title>Unretractive and S-unretractive joins and lexicographic products of graphs</title><title>Journal of graph theory</title><addtitle>J. Graph Theory</addtitle><description>Graphs without proper endomorphisms are the subject of this article. It is shown that the join of two graphs has this property if and only if both summands have it, and that the lexicographic product of a complete graph or an odd circuit as first factors has this property if and only if the second factor has it. A somewhat stronger theorem is proved if the lexicographic product has no proper strong endomorphism. The corresponding result for the join is the same as for usual endomorphisms.</description><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Exact sciences and technology</subject><subject>Graph theory</subject><subject>Mathematics</subject><subject>Sciences and techniques of general use</subject><issn>0364-9024</issn><issn>1097-0118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNqFkL1PwzAQxS0EEqWwMmdgTbHj2I5HVEGhasvQVrBZjj-KS0giO4X2vyc0qMDEdHfv7vdOegBcIjhAECbX61UzwIhDhCBG9Aj0EOQsbsfsGPQgpmnMYZKegrMQ1rCVCcx6YLwsvWm8VI17N5EsdTSPN7-ldeXKsF8UZutUtfKyfnEqqn2lN6oJUWWjvRbOwYmVRTAX37UPlne3i-F9PHkcPQxvJrHChNKYckaNtpwlOs1yluRSMZIbbYiFlmcMpcRmuUE4NZRApZFGhGuMmGwbTSDug0Hnq3wVgjdW1N69Sb8TCIqvJESbhPhJogWuOqCWQcnCelkqFw4UwzyDHLdnvDv7cIXZ_WMqxqPFnxdxx7rQmO2Blf5VUIYZEU-zkZilfD57nk_FFH8CtXd--g</recordid><startdate>19870901</startdate><enddate>19870901</enddate><creator>Knauer, Ulrich</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19870901</creationdate><title>Unretractive and S-unretractive joins and lexicographic products of graphs</title><author>Knauer, Ulrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3566-6976edf972d48b72bac75bede5f0f987145f8be134e650cd1d159d317ad15d503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Exact sciences and technology</topic><topic>Graph theory</topic><topic>Mathematics</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Knauer, Ulrich</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of graph theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Knauer, Ulrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unretractive and S-unretractive joins and lexicographic products of graphs</atitle><jtitle>Journal of graph theory</jtitle><addtitle>J. Graph Theory</addtitle><date>1987-09-01</date><risdate>1987</risdate><volume>11</volume><issue>3</issue><spage>429</spage><epage>440</epage><pages>429-440</pages><issn>0364-9024</issn><eissn>1097-0118</eissn><coden>JGTHDO</coden><abstract>Graphs without proper endomorphisms are the subject of this article. It is shown that the join of two graphs has this property if and only if both summands have it, and that the lexicographic product of a complete graph or an odd circuit as first factors has this property if and only if the second factor has it. A somewhat stronger theorem is proved if the lexicographic product has no proper strong endomorphism. The corresponding result for the join is the same as for usual endomorphisms.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/jgt.3190110316</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0364-9024
ispartof Journal of graph theory, 1987-09, Vol.11 (3), p.429-440
issn 0364-9024
1097-0118
language eng
recordid cdi_crossref_primary_10_1002_jgt_3190110316
source Wiley Online Library Mathematics Backfiles
subjects Combinatorics
Combinatorics. Ordered structures
Exact sciences and technology
Graph theory
Mathematics
Sciences and techniques of general use
title Unretractive and S-unretractive joins and lexicographic products of graphs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A04%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unretractive%20and%20S-unretractive%20joins%20and%20lexicographic%20products%20of%20graphs&rft.jtitle=Journal%20of%20graph%20theory&rft.au=Knauer,%20Ulrich&rft.date=1987-09-01&rft.volume=11&rft.issue=3&rft.spage=429&rft.epage=440&rft.pages=429-440&rft.issn=0364-9024&rft.eissn=1097-0118&rft.coden=JGTHDO&rft_id=info:doi/10.1002/jgt.3190110316&rft_dat=%3Cwiley_cross%3EJGT3190110316%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3566-6976edf972d48b72bac75bede5f0f987145f8be134e650cd1d159d317ad15d503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true