Loading…

Pulsed electromagnetic fields enhance BMP-2 dependent osteoblastic differentiation of human mesenchymal stem cells

Mesenchymal stem cells (MSCs) express an osteoblastic phenotype when treated with BMP‐2, and BMP‐2 is used clinically to induce bone formation although high doses are required. Pulsed electromagnetic fields (PEMF) also promote osteogenesis in vivo, in part through direct action on osteoblasts. We te...

Full description

Saved in:
Bibliographic Details
Published in:Journal of orthopaedic research 2008-09, Vol.26 (9), p.1250-1255
Main Authors: Schwartz, Z., Simon, B. J., Duran, M. A., Barabino, G., Chaudhri, R., Boyan, B. D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mesenchymal stem cells (MSCs) express an osteoblastic phenotype when treated with BMP‐2, and BMP‐2 is used clinically to induce bone formation although high doses are required. Pulsed electromagnetic fields (PEMF) also promote osteogenesis in vivo, in part through direct action on osteoblasts. We tested the hypothesis that PEMF enhances osteogenesis of MSCs in the presence of an inductive stimulus like BMP‐2. Confluent cultures of human MSCs were grown on calcium phosphate disks and were treated with osteogenic media (OM), OM containing 40 ng/mL rhBMP‐2, OM + PEMF (8 h/day), or OM + BMP‐2 + PEMF. MSCs demonstrated minor increases in alkaline phosphatase (ALP) during 24 days in culture and no change in osteocalcin. OM increased ALP and osteocalcin by day 6, but PEMF had no additional effect at any time. BMP‐2 was stimulatory over OM, and PEMF + BMP‐2 synergistically increased ALP and osteocalcin. PEMF also enhanced the effects of BMP‐2 on PGE2, latent and active TGF‐β1, and osteoprotegerin. Effects of PEMF on BMP‐2–treated cells were greatest at days 12 to 20. These results demonstrate that PEMF enhances osteogenic effects of BMP‐2 on MSCs cultured on calcium phosphate substrates, suggesting that PEMF will improve MSC response to BMP‐2 in vivo in a bone environment. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 26:1250–1255, 2008
ISSN:0736-0266
1554-527X
DOI:10.1002/jor.20591