Loading…
The Glass Transition and Sub-Tg-Relaxation in Pharmaceutical Powders and Dried Proteins by Thermally Stimulated Current
The main goal of the study was to evaluate the applicability of thermally stimulated current (TSC) as a measure of molecular mobility in dried globular proteins. Three proteins, porcine somatotropin, bovine serum albumin, and immunoglobulin, as well as materials with a strong calorimetric glass tran...
Saved in:
Published in: | Journal of pharmaceutical sciences 2009-01, Vol.98 (1), p.81-93 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2967-14356c5008c4836971a9a910dea3c164461795c4f90ca50a9b87165ce940ff8b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c2967-14356c5008c4836971a9a910dea3c164461795c4f90ca50a9b87165ce940ff8b3 |
container_end_page | 93 |
container_issue | 1 |
container_start_page | 81 |
container_title | Journal of pharmaceutical sciences |
container_volume | 98 |
creator | Reddy, Renuka Chang, Liuquan (Lucy) Luthra, Suman Collins, George Lopez, Ciro Shamblin, Sheri L. Pikal, Michael J. Gatlin, Larry A. Shalaev, Evgenyi Y. |
description | The main goal of the study was to evaluate the applicability of thermally stimulated current (TSC) as a measure of molecular mobility in dried globular proteins. Three proteins, porcine somatotropin, bovine serum albumin, and immunoglobulin, as well as materials with a strong calorimetric glass transition (Tg), that is, indomethacin and poly(vinypyrrolidone) (PVP), were studied by both TSC and differential scanning calorimetry (DSC). Protein/sugar colyophilized mixtures were also studied by DSC, to estimate calorimetric Tg for proteins using extrapolation procedure. In the majority of cases, TSC detected relaxation events that were not observed by DSC. For example, a sub-Tg TSC event (beta-relaxation) was observed for PVP at approximately 120°C, which was not detected by the DSC. Similarly, DSC did not detect events in any of the three proteins below the thermal denaturation temperature whereas a dipole relaxation was detected by TSC in the range of 90–140°C depending on the protein studied. The TSC signal in proteins was tentatively assigned as localized mobility of protein segments, which is different from a large-scale cooperative motions usually associated with calorimetric Tg. TSC is a promising method to study the molecular mobility in proteins and other materials with weak calorimetric Tg. © 2008 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:81–93, 2009 |
doi_str_mv | 10.1002/jps.21397 |
format | article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_jps_21397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022354916328519</els_id><sourcerecordid>JPS21397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2967-14356c5008c4836971a9a910dea3c164461795c4f90ca50a9b87165ce940ff8b3</originalsourceid><addsrcrecordid>eNp1kM1OGzEURi1UJFLoom_gDYsuBuwZ_8TLNqUBFMGIpOrSuvHcAdPJTGRPGvL2mAywKitL1-f7rn0I-crZGWcsP39cx7OcF0YfkBGXOcsU4_oTGaW7PCukMEfkc4yPjDHFpByR7eIB6bSBGOkiQBt977uWQlvR-WaZLe6zO2zgCfZT39LyAcIKHG5676ChZbetMMQ9_zN4rGgZuh59G-lyR1N1gptmR-e9X20a6BMw2YSAbX9CDmtoIn55PY_J718Xi8llNrudXk2-zzKXG6UzLgqpnGRs7MS4UEZzMGA4qxAKx5UQimsjnagNcyAZmOVYcyUdGsHqerwsjsm3odeFLsaAtV0Hv4Kws5zZF2M2GbN7Y4k9Hdg1xPS7OvlwPr4H8oSrnInEnQ_c1je4-7jQXpfzt-ZsSPjY49N7AsJfq3Shpf1zM7U_-EyUd5favmwoBh6Tmn8eg43OY-uw8gFdb6vO_-f9zyq-mzk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Glass Transition and Sub-Tg-Relaxation in Pharmaceutical Powders and Dried Proteins by Thermally Stimulated Current</title><source>ScienceDirect</source><source>Wiley-Blackwell Journals</source><creator>Reddy, Renuka ; Chang, Liuquan (Lucy) ; Luthra, Suman ; Collins, George ; Lopez, Ciro ; Shamblin, Sheri L. ; Pikal, Michael J. ; Gatlin, Larry A. ; Shalaev, Evgenyi Y.</creator><creatorcontrib>Reddy, Renuka ; Chang, Liuquan (Lucy) ; Luthra, Suman ; Collins, George ; Lopez, Ciro ; Shamblin, Sheri L. ; Pikal, Michael J. ; Gatlin, Larry A. ; Shalaev, Evgenyi Y.</creatorcontrib><description>The main goal of the study was to evaluate the applicability of thermally stimulated current (TSC) as a measure of molecular mobility in dried globular proteins. Three proteins, porcine somatotropin, bovine serum albumin, and immunoglobulin, as well as materials with a strong calorimetric glass transition (Tg), that is, indomethacin and poly(vinypyrrolidone) (PVP), were studied by both TSC and differential scanning calorimetry (DSC). Protein/sugar colyophilized mixtures were also studied by DSC, to estimate calorimetric Tg for proteins using extrapolation procedure. In the majority of cases, TSC detected relaxation events that were not observed by DSC. For example, a sub-Tg TSC event (beta-relaxation) was observed for PVP at approximately 120°C, which was not detected by the DSC. Similarly, DSC did not detect events in any of the three proteins below the thermal denaturation temperature whereas a dipole relaxation was detected by TSC in the range of 90–140°C depending on the protein studied. The TSC signal in proteins was tentatively assigned as localized mobility of protein segments, which is different from a large-scale cooperative motions usually associated with calorimetric Tg. TSC is a promising method to study the molecular mobility in proteins and other materials with weak calorimetric Tg. © 2008 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:81–93, 2009</description><identifier>ISSN: 0022-3549</identifier><identifier>EISSN: 1520-6017</identifier><identifier>DOI: 10.1002/jps.21397</identifier><identifier>CODEN: JPMSAE</identifier><language>eng</language><publisher>Hoboken: Elsevier Inc</publisher><subject>amorphous ; Biological and medical sciences ; General pharmacology ; glass transition ; Medical sciences ; Pharmaceutical technology. Pharmaceutical industry ; Pharmacology. Drug treatments ; physical characterization ; proteins ; thermal analysis</subject><ispartof>Journal of pharmaceutical sciences, 2009-01, Vol.98 (1), p.81-93</ispartof><rights>2008 Wiley-Liss, Inc.</rights><rights>Copyright © 2008 Wiley‐Liss, Inc.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2967-14356c5008c4836971a9a910dea3c164461795c4f90ca50a9b87165ce940ff8b3</citedby><cites>FETCH-LOGICAL-c2967-14356c5008c4836971a9a910dea3c164461795c4f90ca50a9b87165ce940ff8b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjps.21397$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022354916328519$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,1417,3549,4024,27923,27924,27925,45574,45575,45780</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21006204$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Reddy, Renuka</creatorcontrib><creatorcontrib>Chang, Liuquan (Lucy)</creatorcontrib><creatorcontrib>Luthra, Suman</creatorcontrib><creatorcontrib>Collins, George</creatorcontrib><creatorcontrib>Lopez, Ciro</creatorcontrib><creatorcontrib>Shamblin, Sheri L.</creatorcontrib><creatorcontrib>Pikal, Michael J.</creatorcontrib><creatorcontrib>Gatlin, Larry A.</creatorcontrib><creatorcontrib>Shalaev, Evgenyi Y.</creatorcontrib><title>The Glass Transition and Sub-Tg-Relaxation in Pharmaceutical Powders and Dried Proteins by Thermally Stimulated Current</title><title>Journal of pharmaceutical sciences</title><addtitle>J. Pharm. Sci</addtitle><description>The main goal of the study was to evaluate the applicability of thermally stimulated current (TSC) as a measure of molecular mobility in dried globular proteins. Three proteins, porcine somatotropin, bovine serum albumin, and immunoglobulin, as well as materials with a strong calorimetric glass transition (Tg), that is, indomethacin and poly(vinypyrrolidone) (PVP), were studied by both TSC and differential scanning calorimetry (DSC). Protein/sugar colyophilized mixtures were also studied by DSC, to estimate calorimetric Tg for proteins using extrapolation procedure. In the majority of cases, TSC detected relaxation events that were not observed by DSC. For example, a sub-Tg TSC event (beta-relaxation) was observed for PVP at approximately 120°C, which was not detected by the DSC. Similarly, DSC did not detect events in any of the three proteins below the thermal denaturation temperature whereas a dipole relaxation was detected by TSC in the range of 90–140°C depending on the protein studied. The TSC signal in proteins was tentatively assigned as localized mobility of protein segments, which is different from a large-scale cooperative motions usually associated with calorimetric Tg. TSC is a promising method to study the molecular mobility in proteins and other materials with weak calorimetric Tg. © 2008 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:81–93, 2009</description><subject>amorphous</subject><subject>Biological and medical sciences</subject><subject>General pharmacology</subject><subject>glass transition</subject><subject>Medical sciences</subject><subject>Pharmaceutical technology. Pharmaceutical industry</subject><subject>Pharmacology. Drug treatments</subject><subject>physical characterization</subject><subject>proteins</subject><subject>thermal analysis</subject><issn>0022-3549</issn><issn>1520-6017</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OGzEURi1UJFLoom_gDYsuBuwZ_8TLNqUBFMGIpOrSuvHcAdPJTGRPGvL2mAywKitL1-f7rn0I-crZGWcsP39cx7OcF0YfkBGXOcsU4_oTGaW7PCukMEfkc4yPjDHFpByR7eIB6bSBGOkiQBt977uWQlvR-WaZLe6zO2zgCfZT39LyAcIKHG5676ChZbetMMQ9_zN4rGgZuh59G-lyR1N1gptmR-e9X20a6BMw2YSAbX9CDmtoIn55PY_J718Xi8llNrudXk2-zzKXG6UzLgqpnGRs7MS4UEZzMGA4qxAKx5UQimsjnagNcyAZmOVYcyUdGsHqerwsjsm3odeFLsaAtV0Hv4Kws5zZF2M2GbN7Y4k9Hdg1xPS7OvlwPr4H8oSrnInEnQ_c1je4-7jQXpfzt-ZsSPjY49N7AsJfq3Shpf1zM7U_-EyUd5favmwoBh6Tmn8eg43OY-uw8gFdb6vO_-f9zyq-mzk</recordid><startdate>200901</startdate><enddate>200901</enddate><creator>Reddy, Renuka</creator><creator>Chang, Liuquan (Lucy)</creator><creator>Luthra, Suman</creator><creator>Collins, George</creator><creator>Lopez, Ciro</creator><creator>Shamblin, Sheri L.</creator><creator>Pikal, Michael J.</creator><creator>Gatlin, Larry A.</creator><creator>Shalaev, Evgenyi Y.</creator><general>Elsevier Inc</general><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>American Pharmaceutical Association</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200901</creationdate><title>The Glass Transition and Sub-Tg-Relaxation in Pharmaceutical Powders and Dried Proteins by Thermally Stimulated Current</title><author>Reddy, Renuka ; Chang, Liuquan (Lucy) ; Luthra, Suman ; Collins, George ; Lopez, Ciro ; Shamblin, Sheri L. ; Pikal, Michael J. ; Gatlin, Larry A. ; Shalaev, Evgenyi Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2967-14356c5008c4836971a9a910dea3c164461795c4f90ca50a9b87165ce940ff8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>amorphous</topic><topic>Biological and medical sciences</topic><topic>General pharmacology</topic><topic>glass transition</topic><topic>Medical sciences</topic><topic>Pharmaceutical technology. Pharmaceutical industry</topic><topic>Pharmacology. Drug treatments</topic><topic>physical characterization</topic><topic>proteins</topic><topic>thermal analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reddy, Renuka</creatorcontrib><creatorcontrib>Chang, Liuquan (Lucy)</creatorcontrib><creatorcontrib>Luthra, Suman</creatorcontrib><creatorcontrib>Collins, George</creatorcontrib><creatorcontrib>Lopez, Ciro</creatorcontrib><creatorcontrib>Shamblin, Sheri L.</creatorcontrib><creatorcontrib>Pikal, Michael J.</creatorcontrib><creatorcontrib>Gatlin, Larry A.</creatorcontrib><creatorcontrib>Shalaev, Evgenyi Y.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of pharmaceutical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reddy, Renuka</au><au>Chang, Liuquan (Lucy)</au><au>Luthra, Suman</au><au>Collins, George</au><au>Lopez, Ciro</au><au>Shamblin, Sheri L.</au><au>Pikal, Michael J.</au><au>Gatlin, Larry A.</au><au>Shalaev, Evgenyi Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Glass Transition and Sub-Tg-Relaxation in Pharmaceutical Powders and Dried Proteins by Thermally Stimulated Current</atitle><jtitle>Journal of pharmaceutical sciences</jtitle><addtitle>J. Pharm. Sci</addtitle><date>2009-01</date><risdate>2009</risdate><volume>98</volume><issue>1</issue><spage>81</spage><epage>93</epage><pages>81-93</pages><issn>0022-3549</issn><eissn>1520-6017</eissn><coden>JPMSAE</coden><abstract>The main goal of the study was to evaluate the applicability of thermally stimulated current (TSC) as a measure of molecular mobility in dried globular proteins. Three proteins, porcine somatotropin, bovine serum albumin, and immunoglobulin, as well as materials with a strong calorimetric glass transition (Tg), that is, indomethacin and poly(vinypyrrolidone) (PVP), were studied by both TSC and differential scanning calorimetry (DSC). Protein/sugar colyophilized mixtures were also studied by DSC, to estimate calorimetric Tg for proteins using extrapolation procedure. In the majority of cases, TSC detected relaxation events that were not observed by DSC. For example, a sub-Tg TSC event (beta-relaxation) was observed for PVP at approximately 120°C, which was not detected by the DSC. Similarly, DSC did not detect events in any of the three proteins below the thermal denaturation temperature whereas a dipole relaxation was detected by TSC in the range of 90–140°C depending on the protein studied. The TSC signal in proteins was tentatively assigned as localized mobility of protein segments, which is different from a large-scale cooperative motions usually associated with calorimetric Tg. TSC is a promising method to study the molecular mobility in proteins and other materials with weak calorimetric Tg. © 2008 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:81–93, 2009</abstract><cop>Hoboken</cop><pub>Elsevier Inc</pub><doi>10.1002/jps.21397</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3549 |
ispartof | Journal of pharmaceutical sciences, 2009-01, Vol.98 (1), p.81-93 |
issn | 0022-3549 1520-6017 |
language | eng |
recordid | cdi_crossref_primary_10_1002_jps_21397 |
source | ScienceDirect; Wiley-Blackwell Journals |
subjects | amorphous Biological and medical sciences General pharmacology glass transition Medical sciences Pharmaceutical technology. Pharmaceutical industry Pharmacology. Drug treatments physical characterization proteins thermal analysis |
title | The Glass Transition and Sub-Tg-Relaxation in Pharmaceutical Powders and Dried Proteins by Thermally Stimulated Current |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A46%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Glass%20Transition%20and%20Sub-Tg-Relaxation%20in%20Pharmaceutical%20Powders%20and%20Dried%20Proteins%20by%20Thermally%20Stimulated%20Current&rft.jtitle=Journal%20of%20pharmaceutical%20sciences&rft.au=Reddy,%20Renuka&rft.date=2009-01&rft.volume=98&rft.issue=1&rft.spage=81&rft.epage=93&rft.pages=81-93&rft.issn=0022-3549&rft.eissn=1520-6017&rft.coden=JPMSAE&rft_id=info:doi/10.1002/jps.21397&rft_dat=%3Cwiley_cross%3EJPS21397%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2967-14356c5008c4836971a9a910dea3c164461795c4f90ca50a9b87165ce940ff8b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |