Loading…

Treatment of hydrocarbon marine pollution with cloud point extraction

The release of hydrocarbons (HC) into the marine environment has serious consequences, both economically and ecologically. This work presents an efficient process to remove HC pollution from seawater: cloud point extraction (CPE), considered to be a reliable, inexpensive, and environmentally friendl...

Full description

Saved in:
Bibliographic Details
Published in:Journal of surfactants and detergents 2024-11, Vol.27 (6), p.949-961
Main Authors: Ghouas, H., Haddou, B., Canselier, J. P., Kameche, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The release of hydrocarbons (HC) into the marine environment has serious consequences, both economically and ecologically. This work presents an efficient process to remove HC pollution from seawater: cloud point extraction (CPE), considered to be a reliable, inexpensive, and environmentally friendly method, using the readily biodegradable nonionic surfactants Lutensol ON30 and Tergitol 15‐S‐7. A real salt water sample with a high chemical oxygen demand (COD = 1700 mg O2/L) was thus treated. First, the phase diagrams of the binary systems (water–surfactant), and the pseudo‐binary systems (water–surfactant–HC), were determined. Second, after a 24 h settling time, considered as optimal, the extraction results, that is, residual soluble COD, residual percentage of surfactant in the dilute phase and volume fraction of coacervate at equilibrium, were expressed in terms of temperature and initial surfactant concentration. For each parameter, the results obtained were modeled using the response surface methodology and represented on three‐dimensional diagrams. They show that the COD can be reduced to 10 and 15 mg O2/L, using Lutensol ON30 and Tergitol 15‐S‐7, respectively, under seawater temperature conditions. Finally, it was shown that the surfactant can be recycled. The present work demonstrates that CPE can reduce the HC content of seawater on a laboratory scale.
ISSN:1097-3958
1558-9293
DOI:10.1002/jsde.12776