Loading…
Spatiotemporal variability of dissolved inorganic macronutrients along the northern Antarctic Peninsula (1996–2019)
The northern Antarctic Peninsula is a key region of the Southern Ocean due to its complex ocean dynamics, distinct water mass sources, and the climate‐driven changes taking place in the region. Despite the importance of macronutrients in supporting strong biological carbon uptake and storage, little...
Saved in:
Published in: | Limnology and oceanography 2023-10, Vol.68 (10), p.2305-2326 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The northern Antarctic Peninsula is a key region of the Southern Ocean due to its complex ocean dynamics, distinct water mass sources, and the climate‐driven changes taking place in the region. Despite the importance of macronutrients in supporting strong biological carbon uptake and storage, little is known about their spatiotemporal variability along the northern Antarctic Peninsula. Hence, we explored for the first time a 24‐year time series (1996–2019) in this region to understand the processes involved in the spatial and interannual variability of macronutrients. We found high macronutrient concentrations, even in surface waters and during strong phytoplankton blooms. Minimum concentrations of dissolved inorganic nitrogen (DIN; 16 μmol kg−1), phosphate (0.7 μmol kg−1), and silicic acid (40 μmol kg−1) in surface waters are higher than those recorded in surrounding regions. The main source of macronutrients is the intrusions of Circumpolar Deep Water and its modified variety, while local sources (organic matter remineralization, water mass mixing, and mesoscale structures) can enhance their spatiotemporal variability. However, we identified a depletion in silicic acid due to the influence of Dense Shelf Water from the Weddell Sea. Macronutrient concentrations show substantial interannual variability driven by the balance between the intrusions of modified Circumpolar Deep Water and advection of Dense Shelf Water, which is largely modulated by the Southern Annular Mode (SAM) and to some extent by El Niño‐Southern Oscillation (ENSO). These findings are critical to improving our understanding of the natural variability of this Southern Ocean ecosystem and how it is responding to climate changes. |
---|---|
ISSN: | 0024-3590 1939-5590 |
DOI: | 10.1002/lno.12424 |