Loading…

Using stable isotopes and gas concentrations for independent constraints on microbial methane oxidation at Arctic Ocean temperatures

Microbial oxidation of methane in oxic water bodies is an important control on the amount of dissolved methane which is released from the ocean to the atmosphere. We explored the use of stable isotope methane spikes to quantify methane oxidation rates in Arctic seawater samples. A Picarro G2201‐i ca...

Full description

Saved in:
Bibliographic Details
Published in:Limnology and oceanography, methods methods, 2017-08, Vol.15 (8), p.737-751
Main Authors: Uhlig, Christiane, Loose, Brice
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Microbial oxidation of methane in oxic water bodies is an important control on the amount of dissolved methane which is released from the ocean to the atmosphere. We explored the use of stable isotope methane spikes to quantify methane oxidation rates in Arctic seawater samples. A Picarro G2201‐i cavity ring‐down spectrometer was used to determine methane concentration and isotope ratios from headspace samples in foil incubators. The methane mass balance and the change in stable isotope ratios served as independent constraints on methane oxidation. For a fractionation factor of 1.025 oxidation rate constants determined with both methods agreed within 20% for small changes in isotope ratio (e.g., 10‰). For large changes in isotope ratio (e.g., 90‰), which was outside the calibration range, methods diverged. Rate constants down to 0.01 d−1 could be resolved with high statistical support. Stable isotope infrared spectroscopy to determine methane oxidation in foil incubators (ISMOFI) was successfully tested on under ice seawater from Utqiagvik, Alaska, by repeated sampling from each incubation vessel. Depending on the amount of isotope spike added, we determined oxidation rates of 0.15 ± 0.02 nmol L−1 d−1 at in situ methane concentration and a maximal oxidation potential of 271 ± 41 nmol L−1 d−1. The ISMOFI method permits variable incubation durations from days to months in a single incubator. The method is transportable and applicable in a variety of field or seagoing laboratory environments, and it avoids the use of hazardous substances such as radioisotopes and toxic chemicals.
ISSN:1541-5856
1541-5856
DOI:10.1002/lom3.10199