Loading…
Acoustic‐telemetry payload control of an autonomous underwater vehicle for mapping tagged fish
Autonomous underwater vehicles (AUVs) have demonstrated superior performance for tracking marine animals tagged with individually coded acoustic transmitters. However, AUVs engaged in mapping the distribution of multiple tagged fish have not previously been able to alter search paths to achieve prec...
Saved in:
Published in: | Limnology and oceanography, methods methods, 2018-11, Vol.16 (11), p.760-772 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Autonomous underwater vehicles (AUVs) have demonstrated superior performance for tracking marine animals tagged with individually coded acoustic transmitters. However, AUVs engaged in mapping the distribution of multiple tagged fish have not previously been able to alter search paths to achieve precise position estimates. This problem is solved by the development of payload control software (Synthetic Aperture Override, SAOVR) that allows the AUV to maneuver with trajectories favorable for solving the tag's location from a synthetic aperture. Upon tag detection during a default mission search path, SAOVR (running on an embedded guest computer) seeks permission to take over navigation from the vehicle's native system after checking constraints of geography, timing, tag identification, signal strength, and current navigation state. Permitted maneuvers are then chosen from a template library and executed before returning the AUV to the point of first deviation for continued searching of other tags. Field evaluation on moored reference tags showed a high level of predictability in the AUV's behavior at SAOVR initiation and through maneuvers. Trials suggest that this logic system is highly beneficial to AUV use for fish telemetry in challenging environments such as narrow, deep fjords, or among reefs. Any mission programmed with the AUV's native software can be run with the SAOVR package to allow scientists to easily implement and manipulate synthetic aperture geometries without altering any of the software. Further modeling can help improve template design specific to expected movements of different fish species and relative to the designation of signal strength‐defined execution thresholds. |
---|---|
ISSN: | 1541-5856 1541-5856 |
DOI: | 10.1002/lom3.10280 |