Loading…

Improved microplastic processing from complex biological samples using a customized vacuum filtration apparatus

Plastics represent the largest component of marine debris globally. In this context, it is essential to quantify the current extent of plastic pollution, including microplastics (MP; plastics

Saved in:
Bibliographic Details
Published in:Limnology and oceanography, methods methods, 2022-09, Vol.20 (9), p.553-567
Main Authors: Schlawinsky, Merle, Santana, Marina F. M., Motti, Cherie A., Martins, Ana Barbosa, Thomas‐Hall, Peter, Miller, Michaela E., Lefèvre, Carine, Kroon, Frederieke J.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2734-84649626dec618bbd1efd9c2a06578c023737a7d3dbe1026e437813eb8cb7d63
cites cdi_FETCH-LOGICAL-c2734-84649626dec618bbd1efd9c2a06578c023737a7d3dbe1026e437813eb8cb7d63
container_end_page 567
container_issue 9
container_start_page 553
container_title Limnology and oceanography, methods
container_volume 20
creator Schlawinsky, Merle
Santana, Marina F. M.
Motti, Cherie A.
Martins, Ana Barbosa
Thomas‐Hall, Peter
Miller, Michaela E.
Lefèvre, Carine
Kroon, Frederieke J.
description Plastics represent the largest component of marine debris globally. In this context, it is essential to quantify the current extent of plastic pollution, including microplastics (MP; plastics
doi_str_mv 10.1002/lom3.10504
format article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_lom3_10504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>LOM310504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2734-84649626dec618bbd1efd9c2a06578c023737a7d3dbe1026e437813eb8cb7d63</originalsourceid><addsrcrecordid>eNp9kMFPwyAYxYnRxDm9-BdwNqlCodAezaJuSc0uuzcU6IKB0UA7nX-9dPXgydP38vJ7L_keAPcYPWKE8ifrHUmqQPQCLHBBcVaUBbv8o6_BTYwfia0o5wvgN64P_qgVdEYG31sRByNh8qSO0Rz2sAveQeldb_UXbI23fm-ksDCKyYpwPFMCyjEO3pnvVHUUchwd7IwdghiMP0DR9yLJMd6Cq07YqO9-7xLsXl92q3VWb982q-c6kzknNCspoxXLmdKS4bJtFdadqmQuECt4KVFOOOGCK6JajVHONCW8xES3pWy5YmQJHuba9FOMQXdNH4wT4dRg1ExLNdNSzXmpBOMZ_jRWn_4hm3r7TubMD3RJbnI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improved microplastic processing from complex biological samples using a customized vacuum filtration apparatus</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Schlawinsky, Merle ; Santana, Marina F. M. ; Motti, Cherie A. ; Martins, Ana Barbosa ; Thomas‐Hall, Peter ; Miller, Michaela E. ; Lefèvre, Carine ; Kroon, Frederieke J.</creator><creatorcontrib>Schlawinsky, Merle ; Santana, Marina F. M. ; Motti, Cherie A. ; Martins, Ana Barbosa ; Thomas‐Hall, Peter ; Miller, Michaela E. ; Lefèvre, Carine ; Kroon, Frederieke J.</creatorcontrib><description>Plastics represent the largest component of marine debris globally. In this context, it is essential to quantify the current extent of plastic pollution, including microplastics (MP; plastics &lt; 5 mm), within marine abiotic and biotic compartments. Despite significant effort, MP studies still face methodological impediments to establish accurate and standardized protocols to separate, process and analyze MPs in environmental samples. Furthermore, underestimation and overestimation of MP contamination, either through loss of MPs or introduction of extraneous MPs during handling and processing, is concerning, particularly when assessing risk profiles for marine ecosystems. Presented here is a custom‐made stainless steel vacuum filtration apparatus designed to perform size‐tiered separation and facilitate retrieval of MPs from a variety of environmental sample matrices. Incorporating this apparatus into a standard MP workflow achieved efficient graduated separation of commonly found MP fragments and fibers, validated by spike‐recovery tests. As a case study, the gastrointestinal tracts of three juvenile Australian sharpnose sharks, Rhizoprionodon taylori, were processed using the filtration apparatus, and 46 anthropogenic items ranging from 0.021 to 8.87 mm were retrieved. This study demonstrates the effective use of the size‐tiered stainless steel vacuum filtration apparatus and an improved efficiency in downstream microphotography and spectroscopic analyses of MPs from a complex sample matrix. Finally, it contributes to the MP research field by delivering more reliable estimates of MP contamination in marine ecosystems.</description><identifier>ISSN: 1541-5856</identifier><identifier>EISSN: 1541-5856</identifier><identifier>DOI: 10.1002/lom3.10504</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><ispartof>Limnology and oceanography, methods, 2022-09, Vol.20 (9), p.553-567</ispartof><rights>2022 Commonwealth of Australia and The Authors. Limnology and Oceanography: Methods © 2022 Association for the Sciences of Limnology and Oceanography.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2734-84649626dec618bbd1efd9c2a06578c023737a7d3dbe1026e437813eb8cb7d63</citedby><cites>FETCH-LOGICAL-c2734-84649626dec618bbd1efd9c2a06578c023737a7d3dbe1026e437813eb8cb7d63</cites><orcidid>0000-0003-1648-7784</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Schlawinsky, Merle</creatorcontrib><creatorcontrib>Santana, Marina F. M.</creatorcontrib><creatorcontrib>Motti, Cherie A.</creatorcontrib><creatorcontrib>Martins, Ana Barbosa</creatorcontrib><creatorcontrib>Thomas‐Hall, Peter</creatorcontrib><creatorcontrib>Miller, Michaela E.</creatorcontrib><creatorcontrib>Lefèvre, Carine</creatorcontrib><creatorcontrib>Kroon, Frederieke J.</creatorcontrib><title>Improved microplastic processing from complex biological samples using a customized vacuum filtration apparatus</title><title>Limnology and oceanography, methods</title><description>Plastics represent the largest component of marine debris globally. In this context, it is essential to quantify the current extent of plastic pollution, including microplastics (MP; plastics &lt; 5 mm), within marine abiotic and biotic compartments. Despite significant effort, MP studies still face methodological impediments to establish accurate and standardized protocols to separate, process and analyze MPs in environmental samples. Furthermore, underestimation and overestimation of MP contamination, either through loss of MPs or introduction of extraneous MPs during handling and processing, is concerning, particularly when assessing risk profiles for marine ecosystems. Presented here is a custom‐made stainless steel vacuum filtration apparatus designed to perform size‐tiered separation and facilitate retrieval of MPs from a variety of environmental sample matrices. Incorporating this apparatus into a standard MP workflow achieved efficient graduated separation of commonly found MP fragments and fibers, validated by spike‐recovery tests. As a case study, the gastrointestinal tracts of three juvenile Australian sharpnose sharks, Rhizoprionodon taylori, were processed using the filtration apparatus, and 46 anthropogenic items ranging from 0.021 to 8.87 mm were retrieved. This study demonstrates the effective use of the size‐tiered stainless steel vacuum filtration apparatus and an improved efficiency in downstream microphotography and spectroscopic analyses of MPs from a complex sample matrix. Finally, it contributes to the MP research field by delivering more reliable estimates of MP contamination in marine ecosystems.</description><issn>1541-5856</issn><issn>1541-5856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMFPwyAYxYnRxDm9-BdwNqlCodAezaJuSc0uuzcU6IKB0UA7nX-9dPXgydP38vJ7L_keAPcYPWKE8ifrHUmqQPQCLHBBcVaUBbv8o6_BTYwfia0o5wvgN64P_qgVdEYG31sRByNh8qSO0Rz2sAveQeldb_UXbI23fm-ksDCKyYpwPFMCyjEO3pnvVHUUchwd7IwdghiMP0DR9yLJMd6Cq07YqO9-7xLsXl92q3VWb982q-c6kzknNCspoxXLmdKS4bJtFdadqmQuECt4KVFOOOGCK6JajVHONCW8xES3pWy5YmQJHuba9FOMQXdNH4wT4dRg1ExLNdNSzXmpBOMZ_jRWn_4hm3r7TubMD3RJbnI</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Schlawinsky, Merle</creator><creator>Santana, Marina F. M.</creator><creator>Motti, Cherie A.</creator><creator>Martins, Ana Barbosa</creator><creator>Thomas‐Hall, Peter</creator><creator>Miller, Michaela E.</creator><creator>Lefèvre, Carine</creator><creator>Kroon, Frederieke J.</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1648-7784</orcidid></search><sort><creationdate>202209</creationdate><title>Improved microplastic processing from complex biological samples using a customized vacuum filtration apparatus</title><author>Schlawinsky, Merle ; Santana, Marina F. M. ; Motti, Cherie A. ; Martins, Ana Barbosa ; Thomas‐Hall, Peter ; Miller, Michaela E. ; Lefèvre, Carine ; Kroon, Frederieke J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2734-84649626dec618bbd1efd9c2a06578c023737a7d3dbe1026e437813eb8cb7d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schlawinsky, Merle</creatorcontrib><creatorcontrib>Santana, Marina F. M.</creatorcontrib><creatorcontrib>Motti, Cherie A.</creatorcontrib><creatorcontrib>Martins, Ana Barbosa</creatorcontrib><creatorcontrib>Thomas‐Hall, Peter</creatorcontrib><creatorcontrib>Miller, Michaela E.</creatorcontrib><creatorcontrib>Lefèvre, Carine</creatorcontrib><creatorcontrib>Kroon, Frederieke J.</creatorcontrib><collection>CrossRef</collection><jtitle>Limnology and oceanography, methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schlawinsky, Merle</au><au>Santana, Marina F. M.</au><au>Motti, Cherie A.</au><au>Martins, Ana Barbosa</au><au>Thomas‐Hall, Peter</au><au>Miller, Michaela E.</au><au>Lefèvre, Carine</au><au>Kroon, Frederieke J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved microplastic processing from complex biological samples using a customized vacuum filtration apparatus</atitle><jtitle>Limnology and oceanography, methods</jtitle><date>2022-09</date><risdate>2022</risdate><volume>20</volume><issue>9</issue><spage>553</spage><epage>567</epage><pages>553-567</pages><issn>1541-5856</issn><eissn>1541-5856</eissn><abstract>Plastics represent the largest component of marine debris globally. In this context, it is essential to quantify the current extent of plastic pollution, including microplastics (MP; plastics &lt; 5 mm), within marine abiotic and biotic compartments. Despite significant effort, MP studies still face methodological impediments to establish accurate and standardized protocols to separate, process and analyze MPs in environmental samples. Furthermore, underestimation and overestimation of MP contamination, either through loss of MPs or introduction of extraneous MPs during handling and processing, is concerning, particularly when assessing risk profiles for marine ecosystems. Presented here is a custom‐made stainless steel vacuum filtration apparatus designed to perform size‐tiered separation and facilitate retrieval of MPs from a variety of environmental sample matrices. Incorporating this apparatus into a standard MP workflow achieved efficient graduated separation of commonly found MP fragments and fibers, validated by spike‐recovery tests. As a case study, the gastrointestinal tracts of three juvenile Australian sharpnose sharks, Rhizoprionodon taylori, were processed using the filtration apparatus, and 46 anthropogenic items ranging from 0.021 to 8.87 mm were retrieved. This study demonstrates the effective use of the size‐tiered stainless steel vacuum filtration apparatus and an improved efficiency in downstream microphotography and spectroscopic analyses of MPs from a complex sample matrix. Finally, it contributes to the MP research field by delivering more reliable estimates of MP contamination in marine ecosystems.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/lom3.10504</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1648-7784</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1541-5856
ispartof Limnology and oceanography, methods, 2022-09, Vol.20 (9), p.553-567
issn 1541-5856
1541-5856
language eng
recordid cdi_crossref_primary_10_1002_lom3_10504
source Wiley-Blackwell Read & Publish Collection
title Improved microplastic processing from complex biological samples using a customized vacuum filtration apparatus
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A48%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20microplastic%20processing%20from%20complex%20biological%20samples%20using%20a%20customized%20vacuum%20filtration%20apparatus&rft.jtitle=Limnology%20and%20oceanography,%20methods&rft.au=Schlawinsky,%20Merle&rft.date=2022-09&rft.volume=20&rft.issue=9&rft.spage=553&rft.epage=567&rft.pages=553-567&rft.issn=1541-5856&rft.eissn=1541-5856&rft_id=info:doi/10.1002/lom3.10504&rft_dat=%3Cwiley_cross%3ELOM310504%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2734-84649626dec618bbd1efd9c2a06578c023737a7d3dbe1026e437813eb8cb7d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true