Loading…
Improved microplastic processing from complex biological samples using a customized vacuum filtration apparatus
Plastics represent the largest component of marine debris globally. In this context, it is essential to quantify the current extent of plastic pollution, including microplastics (MP; plastics
Saved in:
Published in: | Limnology and oceanography, methods methods, 2022-09, Vol.20 (9), p.553-567 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2734-84649626dec618bbd1efd9c2a06578c023737a7d3dbe1026e437813eb8cb7d63 |
---|---|
cites | cdi_FETCH-LOGICAL-c2734-84649626dec618bbd1efd9c2a06578c023737a7d3dbe1026e437813eb8cb7d63 |
container_end_page | 567 |
container_issue | 9 |
container_start_page | 553 |
container_title | Limnology and oceanography, methods |
container_volume | 20 |
creator | Schlawinsky, Merle Santana, Marina F. M. Motti, Cherie A. Martins, Ana Barbosa Thomas‐Hall, Peter Miller, Michaela E. Lefèvre, Carine Kroon, Frederieke J. |
description | Plastics represent the largest component of marine debris globally. In this context, it is essential to quantify the current extent of plastic pollution, including microplastics (MP; plastics |
doi_str_mv | 10.1002/lom3.10504 |
format | article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_lom3_10504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>LOM310504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2734-84649626dec618bbd1efd9c2a06578c023737a7d3dbe1026e437813eb8cb7d63</originalsourceid><addsrcrecordid>eNp9kMFPwyAYxYnRxDm9-BdwNqlCodAezaJuSc0uuzcU6IKB0UA7nX-9dPXgydP38vJ7L_keAPcYPWKE8ifrHUmqQPQCLHBBcVaUBbv8o6_BTYwfia0o5wvgN64P_qgVdEYG31sRByNh8qSO0Rz2sAveQeldb_UXbI23fm-ksDCKyYpwPFMCyjEO3pnvVHUUchwd7IwdghiMP0DR9yLJMd6Cq07YqO9-7xLsXl92q3VWb982q-c6kzknNCspoxXLmdKS4bJtFdadqmQuECt4KVFOOOGCK6JajVHONCW8xES3pWy5YmQJHuba9FOMQXdNH4wT4dRg1ExLNdNSzXmpBOMZ_jRWn_4hm3r7TubMD3RJbnI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improved microplastic processing from complex biological samples using a customized vacuum filtration apparatus</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Schlawinsky, Merle ; Santana, Marina F. M. ; Motti, Cherie A. ; Martins, Ana Barbosa ; Thomas‐Hall, Peter ; Miller, Michaela E. ; Lefèvre, Carine ; Kroon, Frederieke J.</creator><creatorcontrib>Schlawinsky, Merle ; Santana, Marina F. M. ; Motti, Cherie A. ; Martins, Ana Barbosa ; Thomas‐Hall, Peter ; Miller, Michaela E. ; Lefèvre, Carine ; Kroon, Frederieke J.</creatorcontrib><description>Plastics represent the largest component of marine debris globally. In this context, it is essential to quantify the current extent of plastic pollution, including microplastics (MP; plastics < 5 mm), within marine abiotic and biotic compartments. Despite significant effort, MP studies still face methodological impediments to establish accurate and standardized protocols to separate, process and analyze MPs in environmental samples. Furthermore, underestimation and overestimation of MP contamination, either through loss of MPs or introduction of extraneous MPs during handling and processing, is concerning, particularly when assessing risk profiles for marine ecosystems. Presented here is a custom‐made stainless steel vacuum filtration apparatus designed to perform size‐tiered separation and facilitate retrieval of MPs from a variety of environmental sample matrices. Incorporating this apparatus into a standard MP workflow achieved efficient graduated separation of commonly found MP fragments and fibers, validated by spike‐recovery tests. As a case study, the gastrointestinal tracts of three juvenile Australian sharpnose sharks, Rhizoprionodon taylori, were processed using the filtration apparatus, and 46 anthropogenic items ranging from 0.021 to 8.87 mm were retrieved. This study demonstrates the effective use of the size‐tiered stainless steel vacuum filtration apparatus and an improved efficiency in downstream microphotography and spectroscopic analyses of MPs from a complex sample matrix. Finally, it contributes to the MP research field by delivering more reliable estimates of MP contamination in marine ecosystems.</description><identifier>ISSN: 1541-5856</identifier><identifier>EISSN: 1541-5856</identifier><identifier>DOI: 10.1002/lom3.10504</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><ispartof>Limnology and oceanography, methods, 2022-09, Vol.20 (9), p.553-567</ispartof><rights>2022 Commonwealth of Australia and The Authors. Limnology and Oceanography: Methods © 2022 Association for the Sciences of Limnology and Oceanography.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2734-84649626dec618bbd1efd9c2a06578c023737a7d3dbe1026e437813eb8cb7d63</citedby><cites>FETCH-LOGICAL-c2734-84649626dec618bbd1efd9c2a06578c023737a7d3dbe1026e437813eb8cb7d63</cites><orcidid>0000-0003-1648-7784</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Schlawinsky, Merle</creatorcontrib><creatorcontrib>Santana, Marina F. M.</creatorcontrib><creatorcontrib>Motti, Cherie A.</creatorcontrib><creatorcontrib>Martins, Ana Barbosa</creatorcontrib><creatorcontrib>Thomas‐Hall, Peter</creatorcontrib><creatorcontrib>Miller, Michaela E.</creatorcontrib><creatorcontrib>Lefèvre, Carine</creatorcontrib><creatorcontrib>Kroon, Frederieke J.</creatorcontrib><title>Improved microplastic processing from complex biological samples using a customized vacuum filtration apparatus</title><title>Limnology and oceanography, methods</title><description>Plastics represent the largest component of marine debris globally. In this context, it is essential to quantify the current extent of plastic pollution, including microplastics (MP; plastics < 5 mm), within marine abiotic and biotic compartments. Despite significant effort, MP studies still face methodological impediments to establish accurate and standardized protocols to separate, process and analyze MPs in environmental samples. Furthermore, underestimation and overestimation of MP contamination, either through loss of MPs or introduction of extraneous MPs during handling and processing, is concerning, particularly when assessing risk profiles for marine ecosystems. Presented here is a custom‐made stainless steel vacuum filtration apparatus designed to perform size‐tiered separation and facilitate retrieval of MPs from a variety of environmental sample matrices. Incorporating this apparatus into a standard MP workflow achieved efficient graduated separation of commonly found MP fragments and fibers, validated by spike‐recovery tests. As a case study, the gastrointestinal tracts of three juvenile Australian sharpnose sharks, Rhizoprionodon taylori, were processed using the filtration apparatus, and 46 anthropogenic items ranging from 0.021 to 8.87 mm were retrieved. This study demonstrates the effective use of the size‐tiered stainless steel vacuum filtration apparatus and an improved efficiency in downstream microphotography and spectroscopic analyses of MPs from a complex sample matrix. Finally, it contributes to the MP research field by delivering more reliable estimates of MP contamination in marine ecosystems.</description><issn>1541-5856</issn><issn>1541-5856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMFPwyAYxYnRxDm9-BdwNqlCodAezaJuSc0uuzcU6IKB0UA7nX-9dPXgydP38vJ7L_keAPcYPWKE8ifrHUmqQPQCLHBBcVaUBbv8o6_BTYwfia0o5wvgN64P_qgVdEYG31sRByNh8qSO0Rz2sAveQeldb_UXbI23fm-ksDCKyYpwPFMCyjEO3pnvVHUUchwd7IwdghiMP0DR9yLJMd6Cq07YqO9-7xLsXl92q3VWb982q-c6kzknNCspoxXLmdKS4bJtFdadqmQuECt4KVFOOOGCK6JajVHONCW8xES3pWy5YmQJHuba9FOMQXdNH4wT4dRg1ExLNdNSzXmpBOMZ_jRWn_4hm3r7TubMD3RJbnI</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Schlawinsky, Merle</creator><creator>Santana, Marina F. M.</creator><creator>Motti, Cherie A.</creator><creator>Martins, Ana Barbosa</creator><creator>Thomas‐Hall, Peter</creator><creator>Miller, Michaela E.</creator><creator>Lefèvre, Carine</creator><creator>Kroon, Frederieke J.</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1648-7784</orcidid></search><sort><creationdate>202209</creationdate><title>Improved microplastic processing from complex biological samples using a customized vacuum filtration apparatus</title><author>Schlawinsky, Merle ; Santana, Marina F. M. ; Motti, Cherie A. ; Martins, Ana Barbosa ; Thomas‐Hall, Peter ; Miller, Michaela E. ; Lefèvre, Carine ; Kroon, Frederieke J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2734-84649626dec618bbd1efd9c2a06578c023737a7d3dbe1026e437813eb8cb7d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schlawinsky, Merle</creatorcontrib><creatorcontrib>Santana, Marina F. M.</creatorcontrib><creatorcontrib>Motti, Cherie A.</creatorcontrib><creatorcontrib>Martins, Ana Barbosa</creatorcontrib><creatorcontrib>Thomas‐Hall, Peter</creatorcontrib><creatorcontrib>Miller, Michaela E.</creatorcontrib><creatorcontrib>Lefèvre, Carine</creatorcontrib><creatorcontrib>Kroon, Frederieke J.</creatorcontrib><collection>CrossRef</collection><jtitle>Limnology and oceanography, methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schlawinsky, Merle</au><au>Santana, Marina F. M.</au><au>Motti, Cherie A.</au><au>Martins, Ana Barbosa</au><au>Thomas‐Hall, Peter</au><au>Miller, Michaela E.</au><au>Lefèvre, Carine</au><au>Kroon, Frederieke J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved microplastic processing from complex biological samples using a customized vacuum filtration apparatus</atitle><jtitle>Limnology and oceanography, methods</jtitle><date>2022-09</date><risdate>2022</risdate><volume>20</volume><issue>9</issue><spage>553</spage><epage>567</epage><pages>553-567</pages><issn>1541-5856</issn><eissn>1541-5856</eissn><abstract>Plastics represent the largest component of marine debris globally. In this context, it is essential to quantify the current extent of plastic pollution, including microplastics (MP; plastics < 5 mm), within marine abiotic and biotic compartments. Despite significant effort, MP studies still face methodological impediments to establish accurate and standardized protocols to separate, process and analyze MPs in environmental samples. Furthermore, underestimation and overestimation of MP contamination, either through loss of MPs or introduction of extraneous MPs during handling and processing, is concerning, particularly when assessing risk profiles for marine ecosystems. Presented here is a custom‐made stainless steel vacuum filtration apparatus designed to perform size‐tiered separation and facilitate retrieval of MPs from a variety of environmental sample matrices. Incorporating this apparatus into a standard MP workflow achieved efficient graduated separation of commonly found MP fragments and fibers, validated by spike‐recovery tests. As a case study, the gastrointestinal tracts of three juvenile Australian sharpnose sharks, Rhizoprionodon taylori, were processed using the filtration apparatus, and 46 anthropogenic items ranging from 0.021 to 8.87 mm were retrieved. This study demonstrates the effective use of the size‐tiered stainless steel vacuum filtration apparatus and an improved efficiency in downstream microphotography and spectroscopic analyses of MPs from a complex sample matrix. Finally, it contributes to the MP research field by delivering more reliable estimates of MP contamination in marine ecosystems.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/lom3.10504</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1648-7784</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1541-5856 |
ispartof | Limnology and oceanography, methods, 2022-09, Vol.20 (9), p.553-567 |
issn | 1541-5856 1541-5856 |
language | eng |
recordid | cdi_crossref_primary_10_1002_lom3_10504 |
source | Wiley-Blackwell Read & Publish Collection |
title | Improved microplastic processing from complex biological samples using a customized vacuum filtration apparatus |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A48%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20microplastic%20processing%20from%20complex%20biological%20samples%20using%20a%20customized%20vacuum%20filtration%20apparatus&rft.jtitle=Limnology%20and%20oceanography,%20methods&rft.au=Schlawinsky,%20Merle&rft.date=2022-09&rft.volume=20&rft.issue=9&rft.spage=553&rft.epage=567&rft.pages=553-567&rft.issn=1541-5856&rft.eissn=1541-5856&rft_id=info:doi/10.1002/lom3.10504&rft_dat=%3Cwiley_cross%3ELOM310504%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2734-84649626dec618bbd1efd9c2a06578c023737a7d3dbe1026e437813eb8cb7d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |