Loading…
Homo- and Copolymerization of ω-Functional Polystyrene Macromonomers via Coordination Polymerization
Macromonomers have been extensively used, as well defined building blocks for various macromolecular architectures via anionic, ROMP and free radical homo‐ or copolymerization processes. The purpose of the present work was to examine the homopolymerization and copolymerization of ω‐allyl, ω‐undeceny...
Saved in:
Published in: | Macromolecular chemistry and physics 2002-12, Vol.203 (18), p.2583-2589 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Macromonomers have been extensively used, as well defined building blocks for various macromolecular architectures via anionic, ROMP and free radical homo‐ or copolymerization processes. The purpose of the present work was to examine the homopolymerization and copolymerization of ω‐allyl, ω‐undecenyl and ω‐vinylbenzyl polystyrene (PS) macromonomers, in the presence of early or late transition metal catalysts. The influence of several parameters (type of catalytic system, nature of polymerizable end‐group and molar mass of the macromonomer) on the homopolymerization was first investigated. Whereas ω‐allyl or ω‐undecenyl PS macromonomers were not very reactive in homopolymerization whatever the catalyst, ω‐vinylbenzyl PS macromonomers gave interesting results with CpTiCl3/MAO and Cp*TiCl3/MAO. The copolymerization of these macromonomers with ethylene was also studied in the presence of the following palladium catalyst: [(ArNC(Me)C(Me)NAr)Pd(CH2)3(COOMe)]+BAr4′−(VERSIPOL™) (Ar = 2,6‐iPr2–C6H3 and Ar′ = 3,5‐(CF3)2C6H3). ω‐vinylbenzyl PS macromonomers could not be incorporated into poly(ethylene) chains. On the contrary, the incorporation of ω‐allyl PS macromonomers was achieved. Moreover, for macromonomers containing an alkyl spacer between the allylic unit and the PS chain, the incorporation rate, the copolymerization yield and the molar masses of the copolymers were increased, giving access to a new type of graft copolymer structure.
Synthesis of polystyrene macromonomers. |
---|---|
ISSN: | 1022-1352 1521-3935 |
DOI: | 10.1002/macp.200290042 |