Loading…

Non-Isothermal Crystallization of Hyperbranched Poly(ε-caprolactone)s and Their Linear Counterpart

Three hyperbranched poly(ε‐caprolactone)s were prepared with the architectural variation in the length of linear backbone segments consisting of 5, 10, and 20 ε‐caprolactone units (accordingly given the names HPCL–5, –10, and –20, respectively) and in the number of branching points as characterized...

Full description

Saved in:
Bibliographic Details
Published in:Macromolecular chemistry and physics 2006-07, Vol.207 (13), p.1166-1173
Main Authors: Choi, Jeongsoo, Chun, Sang-Wook, Kwak, Seung-Yeop
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Three hyperbranched poly(ε‐caprolactone)s were prepared with the architectural variation in the length of linear backbone segments consisting of 5, 10, and 20 ε‐caprolactone units (accordingly given the names HPCL–5, –10, and –20, respectively) and in the number of branching points as characterized by 1H NMR end group analyses. The non‐isothermal crystallizations of HPCLs and LPCL were performed using DSC at various cooling rates and the kinetic study was further performed by using both Ozawa and Kissinger methods. All the kinetic parameters such as the cooling functions and the apparent activation energy of crystallization indicated that HPCLs with longer linear segments and fewer number of branching points showed faster crystallization rates, whereas LPCL exhibited an intermediate rate between HPCL–10 and HPCL–20, i.e., HPCL–5 
ISSN:1022-1352
1521-3935
DOI:10.1002/macp.200600129