Loading…

The Stability and the Convergence of a Collocation Method for a Class of Cauchy Singular Integral Equations

The author proves the stability and the uniform convergence of a collocation method for solving Cauchy singular integral equations with regular pertubation kernel. Error estimates in the uniform norm are also given.

Saved in:
Bibliographic Details
Published in:Mathematische Nachrichten 1993, Vol.162 (1), p.45-58
Main Author: Capobianco, Maria Rosaria
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3355-7ce88fb8f989e83ab42bea3fac8e7b22bfa79d3266c900b51954830f45e452ae3
cites cdi_FETCH-LOGICAL-c3355-7ce88fb8f989e83ab42bea3fac8e7b22bfa79d3266c900b51954830f45e452ae3
container_end_page 58
container_issue 1
container_start_page 45
container_title Mathematische Nachrichten
container_volume 162
creator Capobianco, Maria Rosaria
description The author proves the stability and the uniform convergence of a collocation method for solving Cauchy singular integral equations with regular pertubation kernel. Error estimates in the uniform norm are also given.
doi_str_mv 10.1002/mana.19931620105
format article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_mana_19931620105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>MANA19931620105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3355-7ce88fb8f989e83ab42bea3fac8e7b22bfa79d3266c900b51954830f45e452ae3</originalsourceid><addsrcrecordid>eNqFkEtPwkAUhSdGExHdu5w_UJxHp-0sXCACEgGN4GM3uS0zUCmtzhS1_95WjNGVq5uc-31ncRA6paRDCWFnG8ihQ6XkNGCEErGHWlQw5rGABvuoVSPCE5H_dIiOnHsmhEgZBi20nq80npUQp1laVhjyBS7rpFfkb9oudZ5oXBgMdZBlRQJlWuR4ostVscCmsM0jA-capgfbZFXhWZovtxlYPMpLvbSQ4f7r9stzx-jAQOb0yfdto_tBf9678sY3w1GvO_YSzoXwwkRHkYkjIyOpIw6xz2IN3EAS6TBmLDYQygVnQZBIQmJBpfAjTowvtC8YaN5GZNeb2MI5q416sekGbKUoUc1YqhlL_RqrVs53ynua6epfXk260-5f39v5qSv1x48Pdq2CkIdCPU6H6vb6kt5dzAbqgX8Cpld_lA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Stability and the Convergence of a Collocation Method for a Class of Cauchy Singular Integral Equations</title><source>Wiley Online Library Mathematics Backfiles</source><creator>Capobianco, Maria Rosaria</creator><creatorcontrib>Capobianco, Maria Rosaria</creatorcontrib><description>The author proves the stability and the uniform convergence of a collocation method for solving Cauchy singular integral equations with regular pertubation kernel. Error estimates in the uniform norm are also given.</description><identifier>ISSN: 0025-584X</identifier><identifier>EISSN: 1522-2616</identifier><identifier>DOI: 10.1002/mana.19931620105</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><ispartof>Mathematische Nachrichten, 1993, Vol.162 (1), p.45-58</ispartof><rights>Copyright © 1993 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3355-7ce88fb8f989e83ab42bea3fac8e7b22bfa79d3266c900b51954830f45e452ae3</citedby><cites>FETCH-LOGICAL-c3355-7ce88fb8f989e83ab42bea3fac8e7b22bfa79d3266c900b51954830f45e452ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmana.19931620105$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmana.19931620105$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,50859,50968</link.rule.ids></links><search><creatorcontrib>Capobianco, Maria Rosaria</creatorcontrib><title>The Stability and the Convergence of a Collocation Method for a Class of Cauchy Singular Integral Equations</title><title>Mathematische Nachrichten</title><addtitle>Math. Nachr</addtitle><description>The author proves the stability and the uniform convergence of a collocation method for solving Cauchy singular integral equations with regular pertubation kernel. Error estimates in the uniform norm are also given.</description><issn>0025-584X</issn><issn>1522-2616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwkAUhSdGExHdu5w_UJxHp-0sXCACEgGN4GM3uS0zUCmtzhS1_95WjNGVq5uc-31ncRA6paRDCWFnG8ihQ6XkNGCEErGHWlQw5rGABvuoVSPCE5H_dIiOnHsmhEgZBi20nq80npUQp1laVhjyBS7rpFfkb9oudZ5oXBgMdZBlRQJlWuR4ostVscCmsM0jA-capgfbZFXhWZovtxlYPMpLvbSQ4f7r9stzx-jAQOb0yfdto_tBf9678sY3w1GvO_YSzoXwwkRHkYkjIyOpIw6xz2IN3EAS6TBmLDYQygVnQZBIQmJBpfAjTowvtC8YaN5GZNeb2MI5q416sekGbKUoUc1YqhlL_RqrVs53ynua6epfXk260-5f39v5qSv1x48Pdq2CkIdCPU6H6vb6kt5dzAbqgX8Cpld_lA</recordid><startdate>1993</startdate><enddate>1993</enddate><creator>Capobianco, Maria Rosaria</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>1993</creationdate><title>The Stability and the Convergence of a Collocation Method for a Class of Cauchy Singular Integral Equations</title><author>Capobianco, Maria Rosaria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3355-7ce88fb8f989e83ab42bea3fac8e7b22bfa79d3266c900b51954830f45e452ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Capobianco, Maria Rosaria</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Mathematische Nachrichten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Capobianco, Maria Rosaria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Stability and the Convergence of a Collocation Method for a Class of Cauchy Singular Integral Equations</atitle><jtitle>Mathematische Nachrichten</jtitle><addtitle>Math. Nachr</addtitle><date>1993</date><risdate>1993</risdate><volume>162</volume><issue>1</issue><spage>45</spage><epage>58</epage><pages>45-58</pages><issn>0025-584X</issn><eissn>1522-2616</eissn><abstract>The author proves the stability and the uniform convergence of a collocation method for solving Cauchy singular integral equations with regular pertubation kernel. Error estimates in the uniform norm are also given.</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/mana.19931620105</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-584X
ispartof Mathematische Nachrichten, 1993, Vol.162 (1), p.45-58
issn 0025-584X
1522-2616
language eng
recordid cdi_crossref_primary_10_1002_mana_19931620105
source Wiley Online Library Mathematics Backfiles
title The Stability and the Convergence of a Collocation Method for a Class of Cauchy Singular Integral Equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A20%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Stability%20and%20the%20Convergence%20of%20a%20Collocation%20Method%20for%20a%20Class%20of%20Cauchy%20Singular%20Integral%20Equations&rft.jtitle=Mathematische%20Nachrichten&rft.au=Capobianco,%20Maria%20Rosaria&rft.date=1993&rft.volume=162&rft.issue=1&rft.spage=45&rft.epage=58&rft.pages=45-58&rft.issn=0025-584X&rft.eissn=1522-2616&rft_id=info:doi/10.1002/mana.19931620105&rft_dat=%3Cwiley_cross%3EMANA19931620105%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3355-7ce88fb8f989e83ab42bea3fac8e7b22bfa79d3266c900b51954830f45e452ae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true