Loading…

Jump processes and nonlinear fractional heat equations on metric measure spaces

Jump processes on metric‐measure spaces are investigated by using heat kernels. It is shown that the heat kernel corresponding to a σ ‐stable type process decays at a polynomial rate rather than at an exponential rate as a Brownian motion. The domain of the Dirichlet form associated with the jump pr...

Full description

Saved in:
Bibliographic Details
Published in:Mathematische Nachrichten 2006-01, Vol.279 (1-2), p.150-163
Main Authors: Hu, Jiaxin, Zähle, Martina
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3932-69c077d2721699048d4afffd02a7a3ccbd7ab7584aa08d6f76c5af261e83783b3
cites cdi_FETCH-LOGICAL-c3932-69c077d2721699048d4afffd02a7a3ccbd7ab7584aa08d6f76c5af261e83783b3
container_end_page 163
container_issue 1-2
container_start_page 150
container_title Mathematische Nachrichten
container_volume 279
creator Hu, Jiaxin
Zähle, Martina
description Jump processes on metric‐measure spaces are investigated by using heat kernels. It is shown that the heat kernel corresponding to a σ ‐stable type process decays at a polynomial rate rather than at an exponential rate as a Brownian motion. The domain of the Dirichlet form associated with the jump process is a Sobolev–Slobodeckij space, and the embedding theorems for this space are derived by using the heat kernel technique. As an application, we investigate nonlinear fractional heat equations of the form $$ { {\partial u} \over {\partial t} }(t, x) = - (- {\rm \Delta})^{\sigma} u(t, x) + u(t, x)^{p} $$ with non‐negative initial values on a metric‐measure space F , and show the non‐existence of non‐negative global solution if 1 < p ≤ 1 + $ { {\sigma \beta} \over {\alpha} } $ , where α is the Hausdorff dimension of F whilst β is the walk dimension of F . (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
doi_str_mv 10.1002/mana.200310352
format article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_mana_200310352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_LTXBL4Z6_W</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3932-69c077d2721699048d4afffd02a7a3ccbd7ab7584aa08d6f76c5af261e83783b3</originalsourceid><addsrcrecordid>eNqFkDFPwzAUhC0EEqWwMvsPpDh2YsdjqaCAQrsUtWKxXh1bBBIn2Img_55URRUb0-mk-07vHULXMZnEhNCbGhxMKCEsJiylJ2gUp5RGlMf8FI2GQBqlWbI5RxchvBNCpBR8hJZPfd3i1jfahGACBldg17iqdAY8th50VzYOKvxmoMPms4e9D7hxuDadL_UgEHpvcGhh6LhEZxaqYK5-dYxe7u9Ws4coX84fZ9M80kwyGnGpiRAFFTTmUpIkKxKw1haEggCm9bYQsBXDvQAkK7gVXKdgh19MxkTGtmyMJode7ZsQvLGq9WUNfqdiovZzqP0c6jjHAMgD8FVWZvdPWj1PF9O_bHRgy9CZ7yML_kNxwUSq1ou5yleb2zx55WrNfgD6fnTD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Jump processes and nonlinear fractional heat equations on metric measure spaces</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Hu, Jiaxin ; Zähle, Martina</creator><creatorcontrib>Hu, Jiaxin ; Zähle, Martina</creatorcontrib><description>Jump processes on metric‐measure spaces are investigated by using heat kernels. It is shown that the heat kernel corresponding to a σ ‐stable type process decays at a polynomial rate rather than at an exponential rate as a Brownian motion. The domain of the Dirichlet form associated with the jump process is a Sobolev–Slobodeckij space, and the embedding theorems for this space are derived by using the heat kernel technique. As an application, we investigate nonlinear fractional heat equations of the form $$ { {\partial u} \over {\partial t} }(t, x) = - (- {\rm \Delta})^{\sigma} u(t, x) + u(t, x)^{p} $$ with non‐negative initial values on a metric‐measure space F , and show the non‐existence of non‐negative global solution if 1 &lt; p ≤ 1 + $ { {\sigma \beta} \over {\alpha} } $ , where α is the Hausdorff dimension of F whilst β is the walk dimension of F . (© 2006 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><identifier>ISSN: 0025-584X</identifier><identifier>EISSN: 1522-2616</identifier><identifier>DOI: 10.1002/mana.200310352</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>Dirichlet form ; fractional heat equation ; Hausdorff dimension ; heat kernel ; Jump process ; Sobolev-Slobodeckij space ; walk dimension</subject><ispartof>Mathematische Nachrichten, 2006-01, Vol.279 (1-2), p.150-163</ispartof><rights>Copyright © 2006 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3932-69c077d2721699048d4afffd02a7a3ccbd7ab7584aa08d6f76c5af261e83783b3</citedby><cites>FETCH-LOGICAL-c3932-69c077d2721699048d4afffd02a7a3ccbd7ab7584aa08d6f76c5af261e83783b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hu, Jiaxin</creatorcontrib><creatorcontrib>Zähle, Martina</creatorcontrib><title>Jump processes and nonlinear fractional heat equations on metric measure spaces</title><title>Mathematische Nachrichten</title><addtitle>Math. Nachr</addtitle><description>Jump processes on metric‐measure spaces are investigated by using heat kernels. It is shown that the heat kernel corresponding to a σ ‐stable type process decays at a polynomial rate rather than at an exponential rate as a Brownian motion. The domain of the Dirichlet form associated with the jump process is a Sobolev–Slobodeckij space, and the embedding theorems for this space are derived by using the heat kernel technique. As an application, we investigate nonlinear fractional heat equations of the form $$ { {\partial u} \over {\partial t} }(t, x) = - (- {\rm \Delta})^{\sigma} u(t, x) + u(t, x)^{p} $$ with non‐negative initial values on a metric‐measure space F , and show the non‐existence of non‐negative global solution if 1 &lt; p ≤ 1 + $ { {\sigma \beta} \over {\alpha} } $ , where α is the Hausdorff dimension of F whilst β is the walk dimension of F . (© 2006 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><subject>Dirichlet form</subject><subject>fractional heat equation</subject><subject>Hausdorff dimension</subject><subject>heat kernel</subject><subject>Jump process</subject><subject>Sobolev-Slobodeckij space</subject><subject>walk dimension</subject><issn>0025-584X</issn><issn>1522-2616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkDFPwzAUhC0EEqWwMvsPpDh2YsdjqaCAQrsUtWKxXh1bBBIn2Img_55URRUb0-mk-07vHULXMZnEhNCbGhxMKCEsJiylJ2gUp5RGlMf8FI2GQBqlWbI5RxchvBNCpBR8hJZPfd3i1jfahGACBldg17iqdAY8th50VzYOKvxmoMPms4e9D7hxuDadL_UgEHpvcGhh6LhEZxaqYK5-dYxe7u9Ws4coX84fZ9M80kwyGnGpiRAFFTTmUpIkKxKw1haEggCm9bYQsBXDvQAkK7gVXKdgh19MxkTGtmyMJode7ZsQvLGq9WUNfqdiovZzqP0c6jjHAMgD8FVWZvdPWj1PF9O_bHRgy9CZ7yML_kNxwUSq1ou5yleb2zx55WrNfgD6fnTD</recordid><startdate>200601</startdate><enddate>200601</enddate><creator>Hu, Jiaxin</creator><creator>Zähle, Martina</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200601</creationdate><title>Jump processes and nonlinear fractional heat equations on metric measure spaces</title><author>Hu, Jiaxin ; Zähle, Martina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3932-69c077d2721699048d4afffd02a7a3ccbd7ab7584aa08d6f76c5af261e83783b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Dirichlet form</topic><topic>fractional heat equation</topic><topic>Hausdorff dimension</topic><topic>heat kernel</topic><topic>Jump process</topic><topic>Sobolev-Slobodeckij space</topic><topic>walk dimension</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Jiaxin</creatorcontrib><creatorcontrib>Zähle, Martina</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Mathematische Nachrichten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Jiaxin</au><au>Zähle, Martina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Jump processes and nonlinear fractional heat equations on metric measure spaces</atitle><jtitle>Mathematische Nachrichten</jtitle><addtitle>Math. Nachr</addtitle><date>2006-01</date><risdate>2006</risdate><volume>279</volume><issue>1-2</issue><spage>150</spage><epage>163</epage><pages>150-163</pages><issn>0025-584X</issn><eissn>1522-2616</eissn><abstract>Jump processes on metric‐measure spaces are investigated by using heat kernels. It is shown that the heat kernel corresponding to a σ ‐stable type process decays at a polynomial rate rather than at an exponential rate as a Brownian motion. The domain of the Dirichlet form associated with the jump process is a Sobolev–Slobodeckij space, and the embedding theorems for this space are derived by using the heat kernel technique. As an application, we investigate nonlinear fractional heat equations of the form $$ { {\partial u} \over {\partial t} }(t, x) = - (- {\rm \Delta})^{\sigma} u(t, x) + u(t, x)^{p} $$ with non‐negative initial values on a metric‐measure space F , and show the non‐existence of non‐negative global solution if 1 &lt; p ≤ 1 + $ { {\sigma \beta} \over {\alpha} } $ , where α is the Hausdorff dimension of F whilst β is the walk dimension of F . (© 2006 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/mana.200310352</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-584X
ispartof Mathematische Nachrichten, 2006-01, Vol.279 (1-2), p.150-163
issn 0025-584X
1522-2616
language eng
recordid cdi_crossref_primary_10_1002_mana_200310352
source Wiley-Blackwell Read & Publish Collection
subjects Dirichlet form
fractional heat equation
Hausdorff dimension
heat kernel
Jump process
Sobolev-Slobodeckij space
walk dimension
title Jump processes and nonlinear fractional heat equations on metric measure spaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A08%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Jump%20processes%20and%20nonlinear%20fractional%20heat%20equations%20on%20metric%20measure%20spaces&rft.jtitle=Mathematische%20Nachrichten&rft.au=Hu,%20Jiaxin&rft.date=2006-01&rft.volume=279&rft.issue=1-2&rft.spage=150&rft.epage=163&rft.pages=150-163&rft.issn=0025-584X&rft.eissn=1522-2616&rft_id=info:doi/10.1002/mana.200310352&rft_dat=%3Cistex_cross%3Eark_67375_WNG_LTXBL4Z6_W%3C/istex_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3932-69c077d2721699048d4afffd02a7a3ccbd7ab7584aa08d6f76c5af261e83783b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true