Loading…

Grothendieck‐Lidskiǐ theorem for subspaces of L p ‐spaces

In 1955, A. Grothendieck has shown that if the linear operator T in a Banach subspace of an L ∞ ‐space is 2/3‐nuclear then the trace of T is well defined and is equal to the sum of all eigenvalues {μ k ( T )} of T . Lidskiǐ, in 1959, proved his famous theorem on the coincidence of the trace of the S...

Full description

Saved in:
Bibliographic Details
Published in:Mathematische Nachrichten 2013-02, Vol.286 (2-3), p.279-282
Main Authors: Reinov, Oleg, Latif, Qaisar
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c169t-6a5678a967c1d611e2510643ff98dd0fddc66d8df8eaa802d94357f45d2514553
cites cdi_FETCH-LOGICAL-c169t-6a5678a967c1d611e2510643ff98dd0fddc66d8df8eaa802d94357f45d2514553
container_end_page 282
container_issue 2-3
container_start_page 279
container_title Mathematische Nachrichten
container_volume 286
creator Reinov, Oleg
Latif, Qaisar
description In 1955, A. Grothendieck has shown that if the linear operator T in a Banach subspace of an L ∞ ‐space is 2/3‐nuclear then the trace of T is well defined and is equal to the sum of all eigenvalues {μ k ( T )} of T . Lidskiǐ, in 1959, proved his famous theorem on the coincidence of the trace of the S 1 ‐operator in L 2 (ν) with its spectral trace \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\sum _{k=1}^\infty \mu _k(T)$\end{document} . We show that for p ∈ [1, ∞] and s ∈ (0, 1] with 1/s = 1 + |1/2 − 1/p|, and for every s‐nuclear operator T in every subspace of any L p (ν)‐space the trace of T is well defined and equals the sum of all eigenvalues of T. Note that for p = 2 one has s = 1, and for p = ∞ one has s = 2/3.
doi_str_mv 10.1002/mana.201100112
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_mana_201100112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_mana_201100112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c169t-6a5678a967c1d611e2510643ff98dd0fddc66d8df8eaa802d94357f45d2514553</originalsourceid><addsrcrecordid>eNo9j8FKxDAURYMoWEe3rvMDre-lTZpsBBl0Rii4mQF3JeYlWMdOSzIu3PkJ81f-h19ihxFXl3s5XDiMXSMUCCBueru1hQCcCqI4YRlKIXKhUJ2ybAJkLnX1fM4uUnoDAGNqlbHbRRx2r35LnXebn69901HadN97Po1D9D0PQ-Tp4yWN1vnEh8AbPvIJPA6X7CzY9-Sv_nLG1g_3q_kyb54Wj_O7JneozC5XVqpaW6Nqh6QQvZAIqipDMJoIApFTijQF7a3VIMhUpaxDJWkCKynLGSuOvy4OKUUf2jF2vY2fLUJ7sG8P9u2_ffkLR19PkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Grothendieck‐Lidskiǐ theorem for subspaces of L p ‐spaces</title><source>Wiley</source><creator>Reinov, Oleg ; Latif, Qaisar</creator><creatorcontrib>Reinov, Oleg ; Latif, Qaisar</creatorcontrib><description>In 1955, A. Grothendieck has shown that if the linear operator T in a Banach subspace of an L ∞ ‐space is 2/3‐nuclear then the trace of T is well defined and is equal to the sum of all eigenvalues {μ k ( T )} of T . Lidskiǐ, in 1959, proved his famous theorem on the coincidence of the trace of the S 1 ‐operator in L 2 (ν) with its spectral trace \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\sum _{k=1}^\infty \mu _k(T)$\end{document} . We show that for p ∈ [1, ∞] and s ∈ (0, 1] with 1/s = 1 + |1/2 − 1/p|, and for every s‐nuclear operator T in every subspace of any L p (ν)‐space the trace of T is well defined and equals the sum of all eigenvalues of T. Note that for p = 2 one has s = 1, and for p = ∞ one has s = 2/3.</description><identifier>ISSN: 0025-584X</identifier><identifier>EISSN: 1522-2616</identifier><identifier>DOI: 10.1002/mana.201100112</identifier><language>eng</language><ispartof>Mathematische Nachrichten, 2013-02, Vol.286 (2-3), p.279-282</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c169t-6a5678a967c1d611e2510643ff98dd0fddc66d8df8eaa802d94357f45d2514553</citedby><cites>FETCH-LOGICAL-c169t-6a5678a967c1d611e2510643ff98dd0fddc66d8df8eaa802d94357f45d2514553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Reinov, Oleg</creatorcontrib><creatorcontrib>Latif, Qaisar</creatorcontrib><title>Grothendieck‐Lidskiǐ theorem for subspaces of L p ‐spaces</title><title>Mathematische Nachrichten</title><description>In 1955, A. Grothendieck has shown that if the linear operator T in a Banach subspace of an L ∞ ‐space is 2/3‐nuclear then the trace of T is well defined and is equal to the sum of all eigenvalues {μ k ( T )} of T . Lidskiǐ, in 1959, proved his famous theorem on the coincidence of the trace of the S 1 ‐operator in L 2 (ν) with its spectral trace \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\sum _{k=1}^\infty \mu _k(T)$\end{document} . We show that for p ∈ [1, ∞] and s ∈ (0, 1] with 1/s = 1 + |1/2 − 1/p|, and for every s‐nuclear operator T in every subspace of any L p (ν)‐space the trace of T is well defined and equals the sum of all eigenvalues of T. Note that for p = 2 one has s = 1, and for p = ∞ one has s = 2/3.</description><issn>0025-584X</issn><issn>1522-2616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9j8FKxDAURYMoWEe3rvMDre-lTZpsBBl0Rii4mQF3JeYlWMdOSzIu3PkJ81f-h19ihxFXl3s5XDiMXSMUCCBueru1hQCcCqI4YRlKIXKhUJ2ybAJkLnX1fM4uUnoDAGNqlbHbRRx2r35LnXebn69901HadN97Po1D9D0PQ-Tp4yWN1vnEh8AbPvIJPA6X7CzY9-Sv_nLG1g_3q_kyb54Wj_O7JneozC5XVqpaW6Nqh6QQvZAIqipDMJoIApFTijQF7a3VIMhUpaxDJWkCKynLGSuOvy4OKUUf2jF2vY2fLUJ7sG8P9u2_ffkLR19PkQ</recordid><startdate>201302</startdate><enddate>201302</enddate><creator>Reinov, Oleg</creator><creator>Latif, Qaisar</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201302</creationdate><title>Grothendieck‐Lidskiǐ theorem for subspaces of L p ‐spaces</title><author>Reinov, Oleg ; Latif, Qaisar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c169t-6a5678a967c1d611e2510643ff98dd0fddc66d8df8eaa802d94357f45d2514553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reinov, Oleg</creatorcontrib><creatorcontrib>Latif, Qaisar</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische Nachrichten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reinov, Oleg</au><au>Latif, Qaisar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grothendieck‐Lidskiǐ theorem for subspaces of L p ‐spaces</atitle><jtitle>Mathematische Nachrichten</jtitle><date>2013-02</date><risdate>2013</risdate><volume>286</volume><issue>2-3</issue><spage>279</spage><epage>282</epage><pages>279-282</pages><issn>0025-584X</issn><eissn>1522-2616</eissn><abstract>In 1955, A. Grothendieck has shown that if the linear operator T in a Banach subspace of an L ∞ ‐space is 2/3‐nuclear then the trace of T is well defined and is equal to the sum of all eigenvalues {μ k ( T )} of T . Lidskiǐ, in 1959, proved his famous theorem on the coincidence of the trace of the S 1 ‐operator in L 2 (ν) with its spectral trace \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\sum _{k=1}^\infty \mu _k(T)$\end{document} . We show that for p ∈ [1, ∞] and s ∈ (0, 1] with 1/s = 1 + |1/2 − 1/p|, and for every s‐nuclear operator T in every subspace of any L p (ν)‐space the trace of T is well defined and equals the sum of all eigenvalues of T. Note that for p = 2 one has s = 1, and for p = ∞ one has s = 2/3.</abstract><doi>10.1002/mana.201100112</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-584X
ispartof Mathematische Nachrichten, 2013-02, Vol.286 (2-3), p.279-282
issn 0025-584X
1522-2616
language eng
recordid cdi_crossref_primary_10_1002_mana_201100112
source Wiley
title Grothendieck‐Lidskiǐ theorem for subspaces of L p ‐spaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T13%3A09%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grothendieck%E2%80%90Lidski%C7%90%20theorem%20for%20subspaces%20of%20L%20p%20%E2%80%90spaces&rft.jtitle=Mathematische%20Nachrichten&rft.au=Reinov,%20Oleg&rft.date=2013-02&rft.volume=286&rft.issue=2-3&rft.spage=279&rft.epage=282&rft.pages=279-282&rft.issn=0025-584X&rft.eissn=1522-2616&rft_id=info:doi/10.1002/mana.201100112&rft_dat=%3Ccrossref%3E10_1002_mana_201100112%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c169t-6a5678a967c1d611e2510643ff98dd0fddc66d8df8eaa802d94357f45d2514553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true