Loading…

Self-Assembly and Dispersion of Chromogenic Molecules: A Versatile and General Approach for Self-Assessing Polymers

Self‐assessing polymer blends based on poly(ethylene terephthalate glycol) or linear low‐density polyethylene and small amounts (0.5–2% w/w) of chromogenic sensor dyes are prepared and investigated. The cyano‐substituted oligo(p‐phenylene vinylene) dyes employed in the study exhibit pronounced optic...

Full description

Saved in:
Bibliographic Details
Published in:Macromolecular rapid communications. 2006-12, Vol.27 (23), p.1981-1987
Main Authors: Kunzelman, Jill, Crenshaw, Brent R., Kinami, Maki, Weder, Christoph
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Self‐assessing polymer blends based on poly(ethylene terephthalate glycol) or linear low‐density polyethylene and small amounts (0.5–2% w/w) of chromogenic sensor dyes are prepared and investigated. The cyano‐substituted oligo(p‐phenylene vinylene) dyes employed in the study exhibit pronounced optical absorption changes upon self‐assembly, because of charge‐transfer interactions or conformation changes. The extent of dye aggregation (and therewith the optical absorption characteristics) in these blends is significantly influenced by exposure to external stimuli. Subjecting appropriately processed samples to either temperatures above their glass transition or mechanical deformation can significantly change the extent of aggregation, which in turn leads to a color change. Mechano‐optical response of a 1.0% w/w LLDPE/C18‐RG blend film. Pristine films are orange due to aggregated dye molecules. Deformation leads to dispersion of the dye and irreversibly changes the color to yellow.
ISSN:1022-1336
1521-3927
DOI:10.1002/marc.200600642