Loading…

Pattern dynamics in a water–vegetation model with cross‐diffusion and nonlocal delay

In semiarid areas, the positive feedback effect of vegetation and soil moisture plays an indispensable role in the water absorption process of plant roots. In addition, vegetation can absorb water through the nonlocal interaction of roots. Therefore, in this article, we consider how the interactions...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical methods in the applied sciences 2024-09
Main Authors: Guo, Gaihui, You, Jing, Ahmed Abbakar, Khalid
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c119t-7b7268b6c5e3d2e00b91205870bbbac199cc6ee0cae6ea3e0be1546840a64fa33
container_end_page
container_issue
container_start_page
container_title Mathematical methods in the applied sciences
container_volume
creator Guo, Gaihui
You, Jing
Ahmed Abbakar, Khalid
description In semiarid areas, the positive feedback effect of vegetation and soil moisture plays an indispensable role in the water absorption process of plant roots. In addition, vegetation can absorb water through the nonlocal interaction of roots. Therefore, in this article, we consider how the interactions between cross‐diffusion and nonlocal delay affect vegetation growth. Through mathematical analysis, the conditions for the occurrence of the Turing pattern in the water–vegetation model are obtained. Meanwhile, using the multi‐scale analysis method, the amplitude equation near the Turing bifurcation boundary is obtained. By analyzing the stability of the amplitude equation, the conditions for the appearance of Turing patterns such as stripes, hexagons, and mixtures of stripes and hexagons are determined. Some numerical simulations are given to illustrate the analytical results, especially the evolution processes of vegetation patterns depicted under different parameters.
doi_str_mv 10.1002/mma.10480
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_mma_10480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_mma_10480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c119t-7b7268b6c5e3d2e00b91205870bbbac199cc6ee0cae6ea3e0be1546840a64fa33</originalsourceid><addsrcrecordid>eNotkMFKxEAQRAdRcF09-Adz9RDtTiaT5CiLusKCHhS8hZ5JRyPJRDKjS277CYJ_uF9idvVURVXRNE-Ic4RLBIivuo4mo3I4EDOEoohQZfpQzAAziFSM6liceP8OADliPBMvjxQCD05Wo6OusV42TpJc0xRuNz9f_MqBQtM72fUVt3LdhDdph9777ea7aur60-9KcpV0vWt7S62cdjSeiqOaWs9n_zoXz7c3T4tltHq4u19cryKLWIQoM1msc6NtykkVM4ApMIY0z8AYQxaLwlrNDJZYMyUMhjFVOldAWtWUJHNx8Xd3_9TAdfkxNB0NY4lQ7pCUE5JyjyT5BVd8V80</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Pattern dynamics in a water–vegetation model with cross‐diffusion and nonlocal delay</title><source>Wiley</source><creator>Guo, Gaihui ; You, Jing ; Ahmed Abbakar, Khalid</creator><creatorcontrib>Guo, Gaihui ; You, Jing ; Ahmed Abbakar, Khalid</creatorcontrib><description>In semiarid areas, the positive feedback effect of vegetation and soil moisture plays an indispensable role in the water absorption process of plant roots. In addition, vegetation can absorb water through the nonlocal interaction of roots. Therefore, in this article, we consider how the interactions between cross‐diffusion and nonlocal delay affect vegetation growth. Through mathematical analysis, the conditions for the occurrence of the Turing pattern in the water–vegetation model are obtained. Meanwhile, using the multi‐scale analysis method, the amplitude equation near the Turing bifurcation boundary is obtained. By analyzing the stability of the amplitude equation, the conditions for the appearance of Turing patterns such as stripes, hexagons, and mixtures of stripes and hexagons are determined. Some numerical simulations are given to illustrate the analytical results, especially the evolution processes of vegetation patterns depicted under different parameters.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.10480</identifier><language>eng</language><ispartof>Mathematical methods in the applied sciences, 2024-09</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c119t-7b7268b6c5e3d2e00b91205870bbbac199cc6ee0cae6ea3e0be1546840a64fa33</cites><orcidid>0000-0003-4444-0051</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Guo, Gaihui</creatorcontrib><creatorcontrib>You, Jing</creatorcontrib><creatorcontrib>Ahmed Abbakar, Khalid</creatorcontrib><title>Pattern dynamics in a water–vegetation model with cross‐diffusion and nonlocal delay</title><title>Mathematical methods in the applied sciences</title><description>In semiarid areas, the positive feedback effect of vegetation and soil moisture plays an indispensable role in the water absorption process of plant roots. In addition, vegetation can absorb water through the nonlocal interaction of roots. Therefore, in this article, we consider how the interactions between cross‐diffusion and nonlocal delay affect vegetation growth. Through mathematical analysis, the conditions for the occurrence of the Turing pattern in the water–vegetation model are obtained. Meanwhile, using the multi‐scale analysis method, the amplitude equation near the Turing bifurcation boundary is obtained. By analyzing the stability of the amplitude equation, the conditions for the appearance of Turing patterns such as stripes, hexagons, and mixtures of stripes and hexagons are determined. Some numerical simulations are given to illustrate the analytical results, especially the evolution processes of vegetation patterns depicted under different parameters.</description><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkMFKxEAQRAdRcF09-Adz9RDtTiaT5CiLusKCHhS8hZ5JRyPJRDKjS277CYJ_uF9idvVURVXRNE-Ic4RLBIivuo4mo3I4EDOEoohQZfpQzAAziFSM6liceP8OADliPBMvjxQCD05Wo6OusV42TpJc0xRuNz9f_MqBQtM72fUVt3LdhDdph9777ea7aur60-9KcpV0vWt7S62cdjSeiqOaWs9n_zoXz7c3T4tltHq4u19cryKLWIQoM1msc6NtykkVM4ApMIY0z8AYQxaLwlrNDJZYMyUMhjFVOldAWtWUJHNx8Xd3_9TAdfkxNB0NY4lQ7pCUE5JyjyT5BVd8V80</recordid><startdate>20240911</startdate><enddate>20240911</enddate><creator>Guo, Gaihui</creator><creator>You, Jing</creator><creator>Ahmed Abbakar, Khalid</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4444-0051</orcidid></search><sort><creationdate>20240911</creationdate><title>Pattern dynamics in a water–vegetation model with cross‐diffusion and nonlocal delay</title><author>Guo, Gaihui ; You, Jing ; Ahmed Abbakar, Khalid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c119t-7b7268b6c5e3d2e00b91205870bbbac199cc6ee0cae6ea3e0be1546840a64fa33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Gaihui</creatorcontrib><creatorcontrib>You, Jing</creatorcontrib><creatorcontrib>Ahmed Abbakar, Khalid</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Gaihui</au><au>You, Jing</au><au>Ahmed Abbakar, Khalid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pattern dynamics in a water–vegetation model with cross‐diffusion and nonlocal delay</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2024-09-11</date><risdate>2024</risdate><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In semiarid areas, the positive feedback effect of vegetation and soil moisture plays an indispensable role in the water absorption process of plant roots. In addition, vegetation can absorb water through the nonlocal interaction of roots. Therefore, in this article, we consider how the interactions between cross‐diffusion and nonlocal delay affect vegetation growth. Through mathematical analysis, the conditions for the occurrence of the Turing pattern in the water–vegetation model are obtained. Meanwhile, using the multi‐scale analysis method, the amplitude equation near the Turing bifurcation boundary is obtained. By analyzing the stability of the amplitude equation, the conditions for the appearance of Turing patterns such as stripes, hexagons, and mixtures of stripes and hexagons are determined. Some numerical simulations are given to illustrate the analytical results, especially the evolution processes of vegetation patterns depicted under different parameters.</abstract><doi>10.1002/mma.10480</doi><orcidid>https://orcid.org/0000-0003-4444-0051</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2024-09
issn 0170-4214
1099-1476
language eng
recordid cdi_crossref_primary_10_1002_mma_10480
source Wiley
title Pattern dynamics in a water–vegetation model with cross‐diffusion and nonlocal delay
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T23%3A46%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pattern%20dynamics%20in%20a%20water%E2%80%93vegetation%20model%20with%20cross%E2%80%90diffusion%20and%20nonlocal%20delay&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Guo,%20Gaihui&rft.date=2024-09-11&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.10480&rft_dat=%3Ccrossref%3E10_1002_mma_10480%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c119t-7b7268b6c5e3d2e00b91205870bbbac199cc6ee0cae6ea3e0be1546840a64fa33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true