Loading…

Optical solitons, qualitative analysis, and chaotic behaviors to the highly dispersive nonlinear perturbation Schrödinger equation

In this paper, we study the highly dispersive nonlinear perturbation Schrödinger equation, which has arbitrary form of Kudryashov's with sextic‐power law refractive index and generalized nonlocal laws. For the equation has highly dispersive nonlinear terms and higher order derivatives, it canno...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical methods in the applied sciences 2024-11
Main Author: Chen, Yu‐Fei
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c154t-76d62329c1baea494ca9e145e7f431d195c4ff370934f4ab28db8002d86736753
container_end_page
container_issue
container_start_page
container_title Mathematical methods in the applied sciences
container_volume
creator Chen, Yu‐Fei
description In this paper, we study the highly dispersive nonlinear perturbation Schrödinger equation, which has arbitrary form of Kudryashov's with sextic‐power law refractive index and generalized nonlocal laws. For the equation has highly dispersive nonlinear terms and higher order derivatives, it cannot be integrated directly, so we build an integrable factor equation for the approximated equation and apply the trial equation method and the complete discrimination system for polynomial method to create new soliton solutions. On the other hand, we use the bifurcation theory to qualitatively analyze the equation and find the model has periodic solutions, bell‐shaped soliton solutions, and solitary wave solutions via phase diagrams. The topological stability of the solutions with respect to the parameters is explored in order to better understand the effect of parameters perturbations on the stability of the model's solutions. Furthermore, we analyze the modulation instability and give the corresponding linear criterion. After accounting for external perturbation terms, we analyze the chaotic behaviors of the equation through the largest Lyapunov exponents and phase diagrams.
doi_str_mv 10.1002/mma.10592
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_mma_10592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_mma_10592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c154t-76d62329c1baea494ca9e145e7f431d195c4ff370934f4ab28db8002d86736753</originalsourceid><addsrcrecordid>eNotkE1OwzAQRi0EEqWw4AbeIhGwHSeOl6jiT6rUBbCOJrbTGKV2sd1KXXMnLsDFcIDVfHqa-UZ6CF1SckMJYbebDeRQSXaEZpRIWVAu6mM0I1SQgjPKT9FZjO-EkIZSNkOfq22yCkYc_WiTd_Eaf-wgR0h2bzA4GA_RZgpOYzWAz9u4MwPsrQ8RJ4_TYPBg18N4wNrGrQlxOnTejdYZCDiTtAtd7vMOv6ghfH9p69YmYJM_TfQcnfQwRnPxP-fo7eH-dfFULFePz4u7ZaFoxVMhal2zkklFOzDAJVcgDeWVET0vqaayUrzvS0FkyXsOHWt012QnuqlFWYuqnKOrv14VfIzB9O022A2EQ0tJO9lrs7321175A_QEZq8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optical solitons, qualitative analysis, and chaotic behaviors to the highly dispersive nonlinear perturbation Schrödinger equation</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Chen, Yu‐Fei</creator><creatorcontrib>Chen, Yu‐Fei</creatorcontrib><description>In this paper, we study the highly dispersive nonlinear perturbation Schrödinger equation, which has arbitrary form of Kudryashov's with sextic‐power law refractive index and generalized nonlocal laws. For the equation has highly dispersive nonlinear terms and higher order derivatives, it cannot be integrated directly, so we build an integrable factor equation for the approximated equation and apply the trial equation method and the complete discrimination system for polynomial method to create new soliton solutions. On the other hand, we use the bifurcation theory to qualitatively analyze the equation and find the model has periodic solutions, bell‐shaped soliton solutions, and solitary wave solutions via phase diagrams. The topological stability of the solutions with respect to the parameters is explored in order to better understand the effect of parameters perturbations on the stability of the model's solutions. Furthermore, we analyze the modulation instability and give the corresponding linear criterion. After accounting for external perturbation terms, we analyze the chaotic behaviors of the equation through the largest Lyapunov exponents and phase diagrams.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.10592</identifier><language>eng</language><ispartof>Mathematical methods in the applied sciences, 2024-11</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c154t-76d62329c1baea494ca9e145e7f431d195c4ff370934f4ab28db8002d86736753</cites><orcidid>0009-0004-7821-5623</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chen, Yu‐Fei</creatorcontrib><title>Optical solitons, qualitative analysis, and chaotic behaviors to the highly dispersive nonlinear perturbation Schrödinger equation</title><title>Mathematical methods in the applied sciences</title><description>In this paper, we study the highly dispersive nonlinear perturbation Schrödinger equation, which has arbitrary form of Kudryashov's with sextic‐power law refractive index and generalized nonlocal laws. For the equation has highly dispersive nonlinear terms and higher order derivatives, it cannot be integrated directly, so we build an integrable factor equation for the approximated equation and apply the trial equation method and the complete discrimination system for polynomial method to create new soliton solutions. On the other hand, we use the bifurcation theory to qualitatively analyze the equation and find the model has periodic solutions, bell‐shaped soliton solutions, and solitary wave solutions via phase diagrams. The topological stability of the solutions with respect to the parameters is explored in order to better understand the effect of parameters perturbations on the stability of the model's solutions. Furthermore, we analyze the modulation instability and give the corresponding linear criterion. After accounting for external perturbation terms, we analyze the chaotic behaviors of the equation through the largest Lyapunov exponents and phase diagrams.</description><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkE1OwzAQRi0EEqWw4AbeIhGwHSeOl6jiT6rUBbCOJrbTGKV2sd1KXXMnLsDFcIDVfHqa-UZ6CF1SckMJYbebDeRQSXaEZpRIWVAu6mM0I1SQgjPKT9FZjO-EkIZSNkOfq22yCkYc_WiTd_Eaf-wgR0h2bzA4GA_RZgpOYzWAz9u4MwPsrQ8RJ4_TYPBg18N4wNrGrQlxOnTejdYZCDiTtAtd7vMOv6ghfH9p69YmYJM_TfQcnfQwRnPxP-fo7eH-dfFULFePz4u7ZaFoxVMhal2zkklFOzDAJVcgDeWVET0vqaayUrzvS0FkyXsOHWt012QnuqlFWYuqnKOrv14VfIzB9O022A2EQ0tJO9lrs7321175A_QEZq8</recordid><startdate>20241104</startdate><enddate>20241104</enddate><creator>Chen, Yu‐Fei</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0004-7821-5623</orcidid></search><sort><creationdate>20241104</creationdate><title>Optical solitons, qualitative analysis, and chaotic behaviors to the highly dispersive nonlinear perturbation Schrödinger equation</title><author>Chen, Yu‐Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c154t-76d62329c1baea494ca9e145e7f431d195c4ff370934f4ab28db8002d86736753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yu‐Fei</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yu‐Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical solitons, qualitative analysis, and chaotic behaviors to the highly dispersive nonlinear perturbation Schrödinger equation</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2024-11-04</date><risdate>2024</risdate><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In this paper, we study the highly dispersive nonlinear perturbation Schrödinger equation, which has arbitrary form of Kudryashov's with sextic‐power law refractive index and generalized nonlocal laws. For the equation has highly dispersive nonlinear terms and higher order derivatives, it cannot be integrated directly, so we build an integrable factor equation for the approximated equation and apply the trial equation method and the complete discrimination system for polynomial method to create new soliton solutions. On the other hand, we use the bifurcation theory to qualitatively analyze the equation and find the model has periodic solutions, bell‐shaped soliton solutions, and solitary wave solutions via phase diagrams. The topological stability of the solutions with respect to the parameters is explored in order to better understand the effect of parameters perturbations on the stability of the model's solutions. Furthermore, we analyze the modulation instability and give the corresponding linear criterion. After accounting for external perturbation terms, we analyze the chaotic behaviors of the equation through the largest Lyapunov exponents and phase diagrams.</abstract><doi>10.1002/mma.10592</doi><orcidid>https://orcid.org/0009-0004-7821-5623</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2024-11
issn 0170-4214
1099-1476
language eng
recordid cdi_crossref_primary_10_1002_mma_10592
source Wiley-Blackwell Read & Publish Collection
title Optical solitons, qualitative analysis, and chaotic behaviors to the highly dispersive nonlinear perturbation Schrödinger equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A05%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20solitons,%20qualitative%20analysis,%20and%20chaotic%20behaviors%20to%20the%20highly%20dispersive%20nonlinear%20perturbation%20Schr%C3%B6dinger%20equation&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Chen,%20Yu%E2%80%90Fei&rft.date=2024-11-04&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.10592&rft_dat=%3Ccrossref%3E10_1002_mma_10592%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c154t-76d62329c1baea494ca9e145e7f431d195c4ff370934f4ab28db8002d86736753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true