Loading…

Flexible film dosimeter for in vivo dosimetry

Purpose The aims of this study were to develop a flexible film dosimeter applicable to the irregular surface of a patient for in vivo dosimetry and to evaluate the device’s dosimetric characteristics. Methods A flexible film dosimeter with active layers consisting of radiochromic‐sensitive films and...

Full description

Saved in:
Bibliographic Details
Published in:Medical physics (Lancaster) 2020-07, Vol.47 (7), p.3204-3213
Main Authors: Cho, Jin Dong, Son, Jaeman, Sung, Jiwon, Choi, Chang Heon, Kim, Jin Sung, Wu, Hong‐Gyun, Park, Jong Min, Kim, Jung‐in
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose The aims of this study were to develop a flexible film dosimeter applicable to the irregular surface of a patient for in vivo dosimetry and to evaluate the device’s dosimetric characteristics. Methods A flexible film dosimeter with active layers consisting of radiochromic‐sensitive films and flexible silicone materials was constructed. The dose‐response, sensitivity, scanning orientation dependence, energy dependence, and dose rate dependence of the flexible film dosimeter were tested. Irradiated dosimeters were scanned 24 h post‐irradiation, and the region of interest was 5 mm × 5 mm. Biological stability tests ensured the safety of application of the flexible film dosimeter for patients. A preliminary clinical study with the flexible film dosimeter was implemented on four patients. Results The red channel demonstrated the highest sensitivity among all channels, and the response sensitivity of the dosimeter decreased with the applied dose, which were the same as the characteristics of GAFCHROMIC EBT3 radiochromic films. The flexible film dosimeter showed no significant energy dependence for photon beams of 6 MV, 6 MV flattening filter‐free (FFF), 10 MV, and 15 MV. The flexible film dosimeter showed no substantial dose rate dependence with 6 or 6 MV FFF. In terms of biological stability, the flexible film dosimeter demonstrated no cytotoxicity, no irritation, and no skin sensitization. In the preliminary clinical study, the dose differences between the measurements with the flexible film dosimeter and calculations with the treatment planning system ranged from −0.1% to 1.2% for all patients. Conclusions The dosimeter developed in this study is a flexible film capable of attachment to a curved skin surface. The biological test results indicate the stability of the flexible film dosimeter. The preliminary clinical study showed that the flexible film dosimeter can be successfully applied as an in vivo dosimeter.
ISSN:0094-2405
2473-4209
DOI:10.1002/mp.14162