Loading…

B 1 destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil

RF behavior in the human head becomes complex at ultrahigh magnetic fields. A bright center and a weak periphery are observed in images obtained with volume coils, while surface coils provide strong signal in the periphery. Intensity patterns reported with volume coils are often loosely referred to...

Full description

Saved in:
Bibliographic Details
Published in:Magnetic resonance in medicine 2005-12, Vol.54 (6), p.1503-1518
Main Authors: Van de Moortele, Pierre‐François, Akgun, Can, Adriany, Gregor, Moeller, Steen, Ritter, Johannes, Collins, Christopher M., Smith, Michael B., Vaughan, J. Thomas, Uğurbil, Kāmil
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:RF behavior in the human head becomes complex at ultrahigh magnetic fields. A bright center and a weak periphery are observed in images obtained with volume coils, while surface coils provide strong signal in the periphery. Intensity patterns reported with volume coils are often loosely referred to as “dielectric resonances,” while modeling studies ascribe them to superposition of traveling waves greatly dampened in lossy brain tissues, raising questions regarding the usage of this term. Here we address this question experimentally, taking full advantage of a transceiver coil array that was used in volume transmit mode, multiple receiver mode, or single transmit surface coil mode. We demonstrate with an appropriately conductive sphere phantom that destructive interferences are responsible for a weak B 1 in the periphery, without a significant standing wave pattern. The relative spatial phase of receive and transmit B 1 proved remarkably similar for the different coil elements, although with opposite rotational direction. Additional simulation data closely matched our phantom results. In the human brain the phase patterns were more complex but still exhibited similarities between coil elements. Our results suggest that measuring spatial B 1 phase could help, within an MR session, to perform RF shimming in order to obtain more homogeneous B 1 in user‐defined areas of the brain. Magn Reson Med, 2005. © 2005 Wiley‐Liss, Inc.
ISSN:0740-3194
1522-2594
DOI:10.1002/mrm.20708