Loading…

Cycle prefix digraphs for symmetric interconnection networks

Motivated by the study of large graphs with given degree and diameter, and the recent interest in the design of highly symmetric interconnection networks (e.g., the study of Cayley digraphs), we are led to the search for large vertex symmetric digraphs with given degree and diameter. The main result...

Full description

Saved in:
Bibliographic Details
Published in:Networks 1993-10, Vol.23 (7), p.641-649
Main Authors: Faber, Vance, Moore, James W., Chen, William Y. C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2717-c0adb0c965049d181234f7719614e751586405ebce0f122d618f2de0796df5883
cites cdi_FETCH-LOGICAL-c2717-c0adb0c965049d181234f7719614e751586405ebce0f122d618f2de0796df5883
container_end_page 649
container_issue 7
container_start_page 641
container_title Networks
container_volume 23
creator Faber, Vance
Moore, James W.
Chen, William Y. C.
description Motivated by the study of large graphs with given degree and diameter, and the recent interest in the design of highly symmetric interconnection networks (e.g., the study of Cayley digraphs), we are led to the search for large vertex symmetric digraphs with given degree and diameter. The main result of this paper is the construction of a new class of vertex symmetric directed graphs, Γδ(D) (δ ≥ D) that have degree δ, diameter D, and (δ + 1)δ … (δ – D + 2) vertices. The graphs Γδ(D) are first found in the notation of Cayley coset digraphs. Then, we discover that they have a very simple representation in terms of sequences like the commonly studied networks such as the hypercube, de Bruijn graphs, and Kautz graphs. Based on the sequence representation, we give a simple shortest‐path routing scheme. We also show that the average distance in our digraph Γδ(D) is very close to its diameter D. As a consequence, it follows that the natural routing scheme, which is even simpler than the shortest‐path routing, is nearly optimal on an average basis. © 1993 by John Wiley & Sons, Inc.
doi_str_mv 10.1002/net.3230230707
format article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_net_3230230707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>NET3230230707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2717-c0adb0c965049d181234f7719614e751586405ebce0f122d618f2de0796df5883</originalsourceid><addsrcrecordid>eNqFj89LwzAUx4MoOKdXzz147XwvaZoUvMjUKYzpYeIxZGmqcV07ksLW_95IZeJJePAu38_3ByGXCBMEoNeN7SaMMognQByREUIhUgAmjskoCmTKIOOn5CyETwBEjnJEbqa9qW2y9bZy-6R0715vP0JStT4J_WZjO-9M4prOetM2jTWda5skJu1avw7n5KTSdbAXP39MXh_ul9PHdP48e5rezlNDBYrUgC5XYIqcQ1aUKJGyrBICixwzKzhymWfA7cpYqJDSMkdZ0dKCKPKy4lKyMZkMvsa3IcSqauvdRvteIajv7So2Ur_bI3A1AFsdjK4rrxvjwoHKZBHTMcqKQbZzte3_MVWL--WfiHRgXejs_sBqv1a5YIKrt8VMYc7lyx0DRdkX19N4WQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cycle prefix digraphs for symmetric interconnection networks</title><source>Wiley Online Library Mathematics Backfiles</source><creator>Faber, Vance ; Moore, James W. ; Chen, William Y. C.</creator><creatorcontrib>Faber, Vance ; Moore, James W. ; Chen, William Y. C.</creatorcontrib><description>Motivated by the study of large graphs with given degree and diameter, and the recent interest in the design of highly symmetric interconnection networks (e.g., the study of Cayley digraphs), we are led to the search for large vertex symmetric digraphs with given degree and diameter. The main result of this paper is the construction of a new class of vertex symmetric directed graphs, Γδ(D) (δ ≥ D) that have degree δ, diameter D, and (δ + 1)δ … (δ – D + 2) vertices. The graphs Γδ(D) are first found in the notation of Cayley coset digraphs. Then, we discover that they have a very simple representation in terms of sequences like the commonly studied networks such as the hypercube, de Bruijn graphs, and Kautz graphs. Based on the sequence representation, we give a simple shortest‐path routing scheme. We also show that the average distance in our digraph Γδ(D) is very close to its diameter D. As a consequence, it follows that the natural routing scheme, which is even simpler than the shortest‐path routing, is nearly optimal on an average basis. © 1993 by John Wiley &amp; Sons, Inc.</description><identifier>ISSN: 0028-3045</identifier><identifier>EISSN: 1097-0037</identifier><identifier>DOI: 10.1002/net.3230230707</identifier><identifier>CODEN: NTWKAA</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Exact sciences and technology ; Flows in networks. Combinatorial problems ; Operational research and scientific management ; Operational research. Management science</subject><ispartof>Networks, 1993-10, Vol.23 (7), p.641-649</ispartof><rights>Copyright © 1993 Wiley Periodicals, Inc., A Wiley Company</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2717-c0adb0c965049d181234f7719614e751586405ebce0f122d618f2de0796df5883</citedby><cites>FETCH-LOGICAL-c2717-c0adb0c965049d181234f7719614e751586405ebce0f122d618f2de0796df5883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnet.3230230707$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnet.3230230707$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,50834,50943</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4897191$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Faber, Vance</creatorcontrib><creatorcontrib>Moore, James W.</creatorcontrib><creatorcontrib>Chen, William Y. C.</creatorcontrib><title>Cycle prefix digraphs for symmetric interconnection networks</title><title>Networks</title><addtitle>Networks</addtitle><description>Motivated by the study of large graphs with given degree and diameter, and the recent interest in the design of highly symmetric interconnection networks (e.g., the study of Cayley digraphs), we are led to the search for large vertex symmetric digraphs with given degree and diameter. The main result of this paper is the construction of a new class of vertex symmetric directed graphs, Γδ(D) (δ ≥ D) that have degree δ, diameter D, and (δ + 1)δ … (δ – D + 2) vertices. The graphs Γδ(D) are first found in the notation of Cayley coset digraphs. Then, we discover that they have a very simple representation in terms of sequences like the commonly studied networks such as the hypercube, de Bruijn graphs, and Kautz graphs. Based on the sequence representation, we give a simple shortest‐path routing scheme. We also show that the average distance in our digraph Γδ(D) is very close to its diameter D. As a consequence, it follows that the natural routing scheme, which is even simpler than the shortest‐path routing, is nearly optimal on an average basis. © 1993 by John Wiley &amp; Sons, Inc.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Flows in networks. Combinatorial problems</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><issn>0028-3045</issn><issn>1097-0037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNqFj89LwzAUx4MoOKdXzz147XwvaZoUvMjUKYzpYeIxZGmqcV07ksLW_95IZeJJePAu38_3ByGXCBMEoNeN7SaMMognQByREUIhUgAmjskoCmTKIOOn5CyETwBEjnJEbqa9qW2y9bZy-6R0715vP0JStT4J_WZjO-9M4prOetM2jTWda5skJu1avw7n5KTSdbAXP39MXh_ul9PHdP48e5rezlNDBYrUgC5XYIqcQ1aUKJGyrBICixwzKzhymWfA7cpYqJDSMkdZ0dKCKPKy4lKyMZkMvsa3IcSqauvdRvteIajv7So2Ur_bI3A1AFsdjK4rrxvjwoHKZBHTMcqKQbZzte3_MVWL--WfiHRgXejs_sBqv1a5YIKrt8VMYc7lyx0DRdkX19N4WQ</recordid><startdate>199310</startdate><enddate>199310</enddate><creator>Faber, Vance</creator><creator>Moore, James W.</creator><creator>Chen, William Y. C.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>John Wiley &amp; Sons</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199310</creationdate><title>Cycle prefix digraphs for symmetric interconnection networks</title><author>Faber, Vance ; Moore, James W. ; Chen, William Y. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2717-c0adb0c965049d181234f7719614e751586405ebce0f122d618f2de0796df5883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Flows in networks. Combinatorial problems</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Faber, Vance</creatorcontrib><creatorcontrib>Moore, James W.</creatorcontrib><creatorcontrib>Chen, William Y. C.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Faber, Vance</au><au>Moore, James W.</au><au>Chen, William Y. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cycle prefix digraphs for symmetric interconnection networks</atitle><jtitle>Networks</jtitle><addtitle>Networks</addtitle><date>1993-10</date><risdate>1993</risdate><volume>23</volume><issue>7</issue><spage>641</spage><epage>649</epage><pages>641-649</pages><issn>0028-3045</issn><eissn>1097-0037</eissn><coden>NTWKAA</coden><abstract>Motivated by the study of large graphs with given degree and diameter, and the recent interest in the design of highly symmetric interconnection networks (e.g., the study of Cayley digraphs), we are led to the search for large vertex symmetric digraphs with given degree and diameter. The main result of this paper is the construction of a new class of vertex symmetric directed graphs, Γδ(D) (δ ≥ D) that have degree δ, diameter D, and (δ + 1)δ … (δ – D + 2) vertices. The graphs Γδ(D) are first found in the notation of Cayley coset digraphs. Then, we discover that they have a very simple representation in terms of sequences like the commonly studied networks such as the hypercube, de Bruijn graphs, and Kautz graphs. Based on the sequence representation, we give a simple shortest‐path routing scheme. We also show that the average distance in our digraph Γδ(D) is very close to its diameter D. As a consequence, it follows that the natural routing scheme, which is even simpler than the shortest‐path routing, is nearly optimal on an average basis. © 1993 by John Wiley &amp; Sons, Inc.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/net.3230230707</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-3045
ispartof Networks, 1993-10, Vol.23 (7), p.641-649
issn 0028-3045
1097-0037
language eng
recordid cdi_crossref_primary_10_1002_net_3230230707
source Wiley Online Library Mathematics Backfiles
subjects Applied sciences
Exact sciences and technology
Flows in networks. Combinatorial problems
Operational research and scientific management
Operational research. Management science
title Cycle prefix digraphs for symmetric interconnection networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T02%3A12%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cycle%20prefix%20digraphs%20for%20symmetric%20interconnection%20networks&rft.jtitle=Networks&rft.au=Faber,%20Vance&rft.date=1993-10&rft.volume=23&rft.issue=7&rft.spage=641&rft.epage=649&rft.pages=641-649&rft.issn=0028-3045&rft.eissn=1097-0037&rft.coden=NTWKAA&rft_id=info:doi/10.1002/net.3230230707&rft_dat=%3Cwiley_cross%3ENET3230230707%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2717-c0adb0c965049d181234f7719614e751586405ebce0f122d618f2de0796df5883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true