Loading…
A new characterization of tree medians with applications to distributed sorting
A new characterization of tree medians is presented: We show that a vertex m is a median of a tree T with n vertices iff there exists a partition of the vertex set into [n/2] disjoint pairs (excluding m when n is odd), such that all the paths connecting the two vertices in any of the pairs pass thro...
Saved in:
Published in: | Networks 1994-01, Vol.24 (1), p.23-29 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3564-173e7bdd06f50c0a0a69f244f6417b1bae0fe10e9b6288a9391aa5263059b2b43 |
---|---|
cites | cdi_FETCH-LOGICAL-c3564-173e7bdd06f50c0a0a69f244f6417b1bae0fe10e9b6288a9391aa5263059b2b43 |
container_end_page | 29 |
container_issue | 1 |
container_start_page | 23 |
container_title | Networks |
container_volume | 24 |
creator | Gerstel, O. Zaks, S. |
description | A new characterization of tree medians is presented: We show that a vertex m is a median of a tree T with n vertices iff there exists a partition of the vertex set into [n/2] disjoint pairs (excluding m when n is odd), such that all the paths connecting the two vertices in any of the pairs pass through m. We show that in this case the sum of the distances between these pairs of vertices is the largest possible among all such partitions, and we use this fact to discuss lower bounds on the message complexity of the distributed sorting problem. We show that, given a network of a tree topology, choosing a median and then routing all the information through it is the best possible strategy, in terms of worst‐case number of messages sent during any execution of any distributed sorting algorithm. We also discuss the implications for networks of a general topology and for the distributed ranking problem. © 1994 by John Wiley & Sons, Inc. |
doi_str_mv | 10.1002/net.3230240104 |
format | article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_net_3230240104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_WD7S8F82_D</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3564-173e7bdd06f50c0a0a69f244f6417b1bae0fe10e9b6288a9391aa5263059b2b43</originalsourceid><addsrcrecordid>eNqFkDFPwzAQRi0EEqWwMntgTTnHTuKMVVsKUtUOFHW0LolDDWkS2Ual_HoCQUVMTLe89530CLlmMGIA4W2t_YiHHEIBDMQJGTBIkwCAJ6dk0AEy4CCic3Lh3AsAYxGTA7Ia01rvab5Fi7nX1nygN01Nm5J6qzXd6cJg7eje-C3Ftq1M_g046htaGOetyd68LqhrrDf18yU5K7Fy-urnDsnT3Ww9uQ8Wq_nDZLwIch7FImAJ10lWFBCXEeSAgHFahkKUsWBJxjLUUGoGOs3iUEpMecoQozDmEKVZmAk-JKN-N7eNc1aXqrVmh_agGKivHKrLoX5zdMJNL7TocqxKi3Vu3NHikseplB2W9tjeVPrwz6haztZ_XgS922XR70cX7auKE55EarOcq800eZR3MlRT_gkOfH_u</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A new characterization of tree medians with applications to distributed sorting</title><source>Wiley Online Library Mathematics Backfiles</source><creator>Gerstel, O. ; Zaks, S.</creator><creatorcontrib>Gerstel, O. ; Zaks, S.</creatorcontrib><description>A new characterization of tree medians is presented: We show that a vertex m is a median of a tree T with n vertices iff there exists a partition of the vertex set into [n/2] disjoint pairs (excluding m when n is odd), such that all the paths connecting the two vertices in any of the pairs pass through m. We show that in this case the sum of the distances between these pairs of vertices is the largest possible among all such partitions, and we use this fact to discuss lower bounds on the message complexity of the distributed sorting problem. We show that, given a network of a tree topology, choosing a median and then routing all the information through it is the best possible strategy, in terms of worst‐case number of messages sent during any execution of any distributed sorting algorithm. We also discuss the implications for networks of a general topology and for the distributed ranking problem. © 1994 by John Wiley & Sons, Inc.</description><identifier>ISSN: 0028-3045</identifier><identifier>EISSN: 1097-0037</identifier><identifier>DOI: 10.1002/net.3230240104</identifier><identifier>CODEN: NTWKAA</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Exact sciences and technology ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Teletraffic</subject><ispartof>Networks, 1994-01, Vol.24 (1), p.23-29</ispartof><rights>Copyright © 1994 Wiley Periodicals, Inc., A Wiley Company</rights><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3564-173e7bdd06f50c0a0a69f244f6417b1bae0fe10e9b6288a9391aa5263059b2b43</citedby><cites>FETCH-LOGICAL-c3564-173e7bdd06f50c0a0a69f244f6417b1bae0fe10e9b6288a9391aa5263059b2b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnet.3230240104$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnet.3230240104$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,50859,50968</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3836988$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gerstel, O.</creatorcontrib><creatorcontrib>Zaks, S.</creatorcontrib><title>A new characterization of tree medians with applications to distributed sorting</title><title>Networks</title><addtitle>Networks</addtitle><description>A new characterization of tree medians is presented: We show that a vertex m is a median of a tree T with n vertices iff there exists a partition of the vertex set into [n/2] disjoint pairs (excluding m when n is odd), such that all the paths connecting the two vertices in any of the pairs pass through m. We show that in this case the sum of the distances between these pairs of vertices is the largest possible among all such partitions, and we use this fact to discuss lower bounds on the message complexity of the distributed sorting problem. We show that, given a network of a tree topology, choosing a median and then routing all the information through it is the best possible strategy, in terms of worst‐case number of messages sent during any execution of any distributed sorting algorithm. We also discuss the implications for networks of a general topology and for the distributed ranking problem. © 1994 by John Wiley & Sons, Inc.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Teletraffic</subject><issn>0028-3045</issn><issn>1097-0037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNqFkDFPwzAQRi0EEqWwMntgTTnHTuKMVVsKUtUOFHW0LolDDWkS2Ual_HoCQUVMTLe89530CLlmMGIA4W2t_YiHHEIBDMQJGTBIkwCAJ6dk0AEy4CCic3Lh3AsAYxGTA7Ia01rvab5Fi7nX1nygN01Nm5J6qzXd6cJg7eje-C3Ftq1M_g046htaGOetyd68LqhrrDf18yU5K7Fy-urnDsnT3Ww9uQ8Wq_nDZLwIch7FImAJ10lWFBCXEeSAgHFahkKUsWBJxjLUUGoGOs3iUEpMecoQozDmEKVZmAk-JKN-N7eNc1aXqrVmh_agGKivHKrLoX5zdMJNL7TocqxKi3Vu3NHikseplB2W9tjeVPrwz6haztZ_XgS922XR70cX7auKE55EarOcq800eZR3MlRT_gkOfH_u</recordid><startdate>199401</startdate><enddate>199401</enddate><creator>Gerstel, O.</creator><creator>Zaks, S.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>John Wiley & Sons</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199401</creationdate><title>A new characterization of tree medians with applications to distributed sorting</title><author>Gerstel, O. ; Zaks, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3564-173e7bdd06f50c0a0a69f244f6417b1bae0fe10e9b6288a9391aa5263059b2b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Teletraffic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gerstel, O.</creatorcontrib><creatorcontrib>Zaks, S.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gerstel, O.</au><au>Zaks, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new characterization of tree medians with applications to distributed sorting</atitle><jtitle>Networks</jtitle><addtitle>Networks</addtitle><date>1994-01</date><risdate>1994</risdate><volume>24</volume><issue>1</issue><spage>23</spage><epage>29</epage><pages>23-29</pages><issn>0028-3045</issn><eissn>1097-0037</eissn><coden>NTWKAA</coden><abstract>A new characterization of tree medians is presented: We show that a vertex m is a median of a tree T with n vertices iff there exists a partition of the vertex set into [n/2] disjoint pairs (excluding m when n is odd), such that all the paths connecting the two vertices in any of the pairs pass through m. We show that in this case the sum of the distances between these pairs of vertices is the largest possible among all such partitions, and we use this fact to discuss lower bounds on the message complexity of the distributed sorting problem. We show that, given a network of a tree topology, choosing a median and then routing all the information through it is the best possible strategy, in terms of worst‐case number of messages sent during any execution of any distributed sorting algorithm. We also discuss the implications for networks of a general topology and for the distributed ranking problem. © 1994 by John Wiley & Sons, Inc.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/net.3230240104</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-3045 |
ispartof | Networks, 1994-01, Vol.24 (1), p.23-29 |
issn | 0028-3045 1097-0037 |
language | eng |
recordid | cdi_crossref_primary_10_1002_net_3230240104 |
source | Wiley Online Library Mathematics Backfiles |
subjects | Applied sciences Exact sciences and technology Systems, networks and services of telecommunications Telecommunications Telecommunications and information theory Teletraffic |
title | A new characterization of tree medians with applications to distributed sorting |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A06%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20characterization%20of%20tree%20medians%20with%20applications%20to%20distributed%20sorting&rft.jtitle=Networks&rft.au=Gerstel,%20O.&rft.date=1994-01&rft.volume=24&rft.issue=1&rft.spage=23&rft.epage=29&rft.pages=23-29&rft.issn=0028-3045&rft.eissn=1097-0037&rft.coden=NTWKAA&rft_id=info:doi/10.1002/net.3230240104&rft_dat=%3Cistex_cross%3Eark_67375_WNG_WD7S8F82_D%3C/istex_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3564-173e7bdd06f50c0a0a69f244f6417b1bae0fe10e9b6288a9391aa5263059b2b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |