Loading…

A new characterization of tree medians with applications to distributed sorting

A new characterization of tree medians is presented: We show that a vertex m is a median of a tree T with n vertices iff there exists a partition of the vertex set into [n/2] disjoint pairs (excluding m when n is odd), such that all the paths connecting the two vertices in any of the pairs pass thro...

Full description

Saved in:
Bibliographic Details
Published in:Networks 1994-01, Vol.24 (1), p.23-29
Main Authors: Gerstel, O., Zaks, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3564-173e7bdd06f50c0a0a69f244f6417b1bae0fe10e9b6288a9391aa5263059b2b43
cites cdi_FETCH-LOGICAL-c3564-173e7bdd06f50c0a0a69f244f6417b1bae0fe10e9b6288a9391aa5263059b2b43
container_end_page 29
container_issue 1
container_start_page 23
container_title Networks
container_volume 24
creator Gerstel, O.
Zaks, S.
description A new characterization of tree medians is presented: We show that a vertex m is a median of a tree T with n vertices iff there exists a partition of the vertex set into [n/2] disjoint pairs (excluding m when n is odd), such that all the paths connecting the two vertices in any of the pairs pass through m. We show that in this case the sum of the distances between these pairs of vertices is the largest possible among all such partitions, and we use this fact to discuss lower bounds on the message complexity of the distributed sorting problem. We show that, given a network of a tree topology, choosing a median and then routing all the information through it is the best possible strategy, in terms of worst‐case number of messages sent during any execution of any distributed sorting algorithm. We also discuss the implications for networks of a general topology and for the distributed ranking problem. © 1994 by John Wiley & Sons, Inc.
doi_str_mv 10.1002/net.3230240104
format article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_net_3230240104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_WD7S8F82_D</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3564-173e7bdd06f50c0a0a69f244f6417b1bae0fe10e9b6288a9391aa5263059b2b43</originalsourceid><addsrcrecordid>eNqFkDFPwzAQRi0EEqWwMntgTTnHTuKMVVsKUtUOFHW0LolDDWkS2Ual_HoCQUVMTLe89530CLlmMGIA4W2t_YiHHEIBDMQJGTBIkwCAJ6dk0AEy4CCic3Lh3AsAYxGTA7Ia01rvab5Fi7nX1nygN01Nm5J6qzXd6cJg7eje-C3Ftq1M_g046htaGOetyd68LqhrrDf18yU5K7Fy-urnDsnT3Ww9uQ8Wq_nDZLwIch7FImAJ10lWFBCXEeSAgHFahkKUsWBJxjLUUGoGOs3iUEpMecoQozDmEKVZmAk-JKN-N7eNc1aXqrVmh_agGKivHKrLoX5zdMJNL7TocqxKi3Vu3NHikseplB2W9tjeVPrwz6haztZ_XgS922XR70cX7auKE55EarOcq800eZR3MlRT_gkOfH_u</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A new characterization of tree medians with applications to distributed sorting</title><source>Wiley Online Library Mathematics Backfiles</source><creator>Gerstel, O. ; Zaks, S.</creator><creatorcontrib>Gerstel, O. ; Zaks, S.</creatorcontrib><description>A new characterization of tree medians is presented: We show that a vertex m is a median of a tree T with n vertices iff there exists a partition of the vertex set into [n/2] disjoint pairs (excluding m when n is odd), such that all the paths connecting the two vertices in any of the pairs pass through m. We show that in this case the sum of the distances between these pairs of vertices is the largest possible among all such partitions, and we use this fact to discuss lower bounds on the message complexity of the distributed sorting problem. We show that, given a network of a tree topology, choosing a median and then routing all the information through it is the best possible strategy, in terms of worst‐case number of messages sent during any execution of any distributed sorting algorithm. We also discuss the implications for networks of a general topology and for the distributed ranking problem. © 1994 by John Wiley &amp; Sons, Inc.</description><identifier>ISSN: 0028-3045</identifier><identifier>EISSN: 1097-0037</identifier><identifier>DOI: 10.1002/net.3230240104</identifier><identifier>CODEN: NTWKAA</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Exact sciences and technology ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Teletraffic</subject><ispartof>Networks, 1994-01, Vol.24 (1), p.23-29</ispartof><rights>Copyright © 1994 Wiley Periodicals, Inc., A Wiley Company</rights><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3564-173e7bdd06f50c0a0a69f244f6417b1bae0fe10e9b6288a9391aa5263059b2b43</citedby><cites>FETCH-LOGICAL-c3564-173e7bdd06f50c0a0a69f244f6417b1bae0fe10e9b6288a9391aa5263059b2b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnet.3230240104$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnet.3230240104$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,50859,50968</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3836988$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gerstel, O.</creatorcontrib><creatorcontrib>Zaks, S.</creatorcontrib><title>A new characterization of tree medians with applications to distributed sorting</title><title>Networks</title><addtitle>Networks</addtitle><description>A new characterization of tree medians is presented: We show that a vertex m is a median of a tree T with n vertices iff there exists a partition of the vertex set into [n/2] disjoint pairs (excluding m when n is odd), such that all the paths connecting the two vertices in any of the pairs pass through m. We show that in this case the sum of the distances between these pairs of vertices is the largest possible among all such partitions, and we use this fact to discuss lower bounds on the message complexity of the distributed sorting problem. We show that, given a network of a tree topology, choosing a median and then routing all the information through it is the best possible strategy, in terms of worst‐case number of messages sent during any execution of any distributed sorting algorithm. We also discuss the implications for networks of a general topology and for the distributed ranking problem. © 1994 by John Wiley &amp; Sons, Inc.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Teletraffic</subject><issn>0028-3045</issn><issn>1097-0037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNqFkDFPwzAQRi0EEqWwMntgTTnHTuKMVVsKUtUOFHW0LolDDWkS2Ual_HoCQUVMTLe89530CLlmMGIA4W2t_YiHHEIBDMQJGTBIkwCAJ6dk0AEy4CCic3Lh3AsAYxGTA7Ia01rvab5Fi7nX1nygN01Nm5J6qzXd6cJg7eje-C3Ftq1M_g046htaGOetyd68LqhrrDf18yU5K7Fy-urnDsnT3Ww9uQ8Wq_nDZLwIch7FImAJ10lWFBCXEeSAgHFahkKUsWBJxjLUUGoGOs3iUEpMecoQozDmEKVZmAk-JKN-N7eNc1aXqrVmh_agGKivHKrLoX5zdMJNL7TocqxKi3Vu3NHikseplB2W9tjeVPrwz6haztZ_XgS922XR70cX7auKE55EarOcq800eZR3MlRT_gkOfH_u</recordid><startdate>199401</startdate><enddate>199401</enddate><creator>Gerstel, O.</creator><creator>Zaks, S.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>John Wiley &amp; Sons</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199401</creationdate><title>A new characterization of tree medians with applications to distributed sorting</title><author>Gerstel, O. ; Zaks, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3564-173e7bdd06f50c0a0a69f244f6417b1bae0fe10e9b6288a9391aa5263059b2b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Teletraffic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gerstel, O.</creatorcontrib><creatorcontrib>Zaks, S.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gerstel, O.</au><au>Zaks, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new characterization of tree medians with applications to distributed sorting</atitle><jtitle>Networks</jtitle><addtitle>Networks</addtitle><date>1994-01</date><risdate>1994</risdate><volume>24</volume><issue>1</issue><spage>23</spage><epage>29</epage><pages>23-29</pages><issn>0028-3045</issn><eissn>1097-0037</eissn><coden>NTWKAA</coden><abstract>A new characterization of tree medians is presented: We show that a vertex m is a median of a tree T with n vertices iff there exists a partition of the vertex set into [n/2] disjoint pairs (excluding m when n is odd), such that all the paths connecting the two vertices in any of the pairs pass through m. We show that in this case the sum of the distances between these pairs of vertices is the largest possible among all such partitions, and we use this fact to discuss lower bounds on the message complexity of the distributed sorting problem. We show that, given a network of a tree topology, choosing a median and then routing all the information through it is the best possible strategy, in terms of worst‐case number of messages sent during any execution of any distributed sorting algorithm. We also discuss the implications for networks of a general topology and for the distributed ranking problem. © 1994 by John Wiley &amp; Sons, Inc.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/net.3230240104</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-3045
ispartof Networks, 1994-01, Vol.24 (1), p.23-29
issn 0028-3045
1097-0037
language eng
recordid cdi_crossref_primary_10_1002_net_3230240104
source Wiley Online Library Mathematics Backfiles
subjects Applied sciences
Exact sciences and technology
Systems, networks and services of telecommunications
Telecommunications
Telecommunications and information theory
Teletraffic
title A new characterization of tree medians with applications to distributed sorting
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A06%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20characterization%20of%20tree%20medians%20with%20applications%20to%20distributed%20sorting&rft.jtitle=Networks&rft.au=Gerstel,%20O.&rft.date=1994-01&rft.volume=24&rft.issue=1&rft.spage=23&rft.epage=29&rft.pages=23-29&rft.issn=0028-3045&rft.eissn=1097-0037&rft.coden=NTWKAA&rft_id=info:doi/10.1002/net.3230240104&rft_dat=%3Cistex_cross%3Eark_67375_WNG_WD7S8F82_D%3C/istex_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3564-173e7bdd06f50c0a0a69f244f6417b1bae0fe10e9b6288a9391aa5263059b2b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true