Loading…

A Dissipation Gap Method for full-field measurement-based identification of elasto-plastic material parameters

SUMMARY Using enriched data such as displacement fields obtained from digital image correlation is a pathway to the local identification of material parameters. Up to now, most of the identification techniques for nonlinear models are based on Finite Element Updating Methods. This article explains h...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical methods in engineering 2012-08, Vol.91 (7), p.685-704
Main Authors: Blaysat, B., Florentin, E., Lubineau, G., Moussawi, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:SUMMARY Using enriched data such as displacement fields obtained from digital image correlation is a pathway to the local identification of material parameters. Up to now, most of the identification techniques for nonlinear models are based on Finite Element Updating Methods. This article explains how an appropriate use of the Dissipation Gap Method can help in this context and be an interesting alternative to these classical techniques. The Dissipation Gap Methods rely on the concept of error in dissipation that has been used mainly for the verification of finite element simulations. We provide here an original application of these founding developments to the identification of material parameters for nonlinear behaviors. The proposed technique and especially the main technical keypoint of building the admissible fields are described in detail. The approach is then illustrated through the identification of heterogeneous isotropic elasto‐plastic properties. The basic numerical features highlighted through these simple examples demonstrate this approach to be a promising tool for nonlinear identification.Copyright © 2012 John Wiley & Sons, Ltd.
ISSN:0029-5981
1097-0207
DOI:10.1002/nme.4287