Loading…
Uncertainty and Sensitivity Analysis of Different Models of Brake Squeal
In this contribution, the brake‐squeal phenomenon is investigated using the pin‐on‐disc setup. The setup is analyzed numerically using the finite element method. The finite element model is evaluated in the time domain, and the vibration mechanism leading to squeal as well as the limit cycles of the...
Saved in:
Published in: | Proceedings in applied mathematics and mechanics 2014-12, Vol.14 (1), p.277-278 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c1726-1888987325adabede12ecb46cdd1e0eda8fbdb4374e7b3f57c3cc0e0aabf025d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c1726-1888987325adabede12ecb46cdd1e0eda8fbdb4374e7b3f57c3cc0e0aabf025d3 |
container_end_page | 278 |
container_issue | 1 |
container_start_page | 277 |
container_title | Proceedings in applied mathematics and mechanics |
container_volume | 14 |
creator | Hanselowski, Andreas Hanss, Michael |
description | In this contribution, the brake‐squeal phenomenon is investigated using the pin‐on‐disc setup. The setup is analyzed numerically using the finite element method. The finite element model is evaluated in the time domain, and the vibration mechanism leading to squeal as well as the limit cycles of the vibration are analyzed. Against the background of the high computational costs, it is evaluated to what extent the Hoffmann‐Gaul minimal model can reproduce the results of the finite element model. Moreover, as brake squeal is very sensitive with respect to parametric uncertainties, the influence of several parametric uncertainties on the limit cycles is analyzed. (© 2014 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim) |
doi_str_mv | 10.1002/pamm.201410126 |
format | article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pamm_201410126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PAMM201410126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1726-1888987325adabede12ecb46cdd1e0eda8fbdb4374e7b3f57c3cc0e0aabf025d3</originalsourceid><addsrcrecordid>eNqFkMFOAjEQhhujiYhePe8LLHa2u-1yBFQwgJogMfHSdNtpUlkWbBd1314QQ7h5mpk__zeHj5BroB2gNLlZq-Wyk1BIgULCT0gLOIhYUA6nR_s5uQjhfdsHzmiLjOaVRl8rV9VNpCoTzbAKrnafbnv3KlU2wYVoZaNbZy16rOpoujJY_mZ9rxYYzT42qMpLcmZVGfDqb7bJ_P7uZTCKJ0_Dh0FvEmsQCY8hz_NuLliSKaMKNAgJ6iLl2hhAikbltjBFykSKomA2E5ppTZEqVViaZIa1SWf_V_tVCB6tXHu3VL6RQOXOg9x5kAcPW6C7B75cic0_bfncm06P2XjPulDj94FVfiG5YCKTr49DSd-ybDzu53LCfgBQP3KH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Uncertainty and Sensitivity Analysis of Different Models of Brake Squeal</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Hanselowski, Andreas ; Hanss, Michael</creator><creatorcontrib>Hanselowski, Andreas ; Hanss, Michael</creatorcontrib><description>In this contribution, the brake‐squeal phenomenon is investigated using the pin‐on‐disc setup. The setup is analyzed numerically using the finite element method. The finite element model is evaluated in the time domain, and the vibration mechanism leading to squeal as well as the limit cycles of the vibration are analyzed. Against the background of the high computational costs, it is evaluated to what extent the Hoffmann‐Gaul minimal model can reproduce the results of the finite element model. Moreover, as brake squeal is very sensitive with respect to parametric uncertainties, the influence of several parametric uncertainties on the limit cycles is analyzed. (© 2014 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)</description><identifier>ISSN: 1617-7061</identifier><identifier>EISSN: 1617-7061</identifier><identifier>DOI: 10.1002/pamm.201410126</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><ispartof>Proceedings in applied mathematics and mechanics, 2014-12, Vol.14 (1), p.277-278</ispartof><rights>Copyright © 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1726-1888987325adabede12ecb46cdd1e0eda8fbdb4374e7b3f57c3cc0e0aabf025d3</citedby><cites>FETCH-LOGICAL-c1726-1888987325adabede12ecb46cdd1e0eda8fbdb4374e7b3f57c3cc0e0aabf025d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hanselowski, Andreas</creatorcontrib><creatorcontrib>Hanss, Michael</creatorcontrib><title>Uncertainty and Sensitivity Analysis of Different Models of Brake Squeal</title><title>Proceedings in applied mathematics and mechanics</title><addtitle>Proc. Appl. Math. Mech</addtitle><description>In this contribution, the brake‐squeal phenomenon is investigated using the pin‐on‐disc setup. The setup is analyzed numerically using the finite element method. The finite element model is evaluated in the time domain, and the vibration mechanism leading to squeal as well as the limit cycles of the vibration are analyzed. Against the background of the high computational costs, it is evaluated to what extent the Hoffmann‐Gaul minimal model can reproduce the results of the finite element model. Moreover, as brake squeal is very sensitive with respect to parametric uncertainties, the influence of several parametric uncertainties on the limit cycles is analyzed. (© 2014 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)</description><issn>1617-7061</issn><issn>1617-7061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkMFOAjEQhhujiYhePe8LLHa2u-1yBFQwgJogMfHSdNtpUlkWbBd1314QQ7h5mpk__zeHj5BroB2gNLlZq-Wyk1BIgULCT0gLOIhYUA6nR_s5uQjhfdsHzmiLjOaVRl8rV9VNpCoTzbAKrnafbnv3KlU2wYVoZaNbZy16rOpoujJY_mZ9rxYYzT42qMpLcmZVGfDqb7bJ_P7uZTCKJ0_Dh0FvEmsQCY8hz_NuLliSKaMKNAgJ6iLl2hhAikbltjBFykSKomA2E5ppTZEqVViaZIa1SWf_V_tVCB6tXHu3VL6RQOXOg9x5kAcPW6C7B75cic0_bfncm06P2XjPulDj94FVfiG5YCKTr49DSd-ybDzu53LCfgBQP3KH</recordid><startdate>201412</startdate><enddate>201412</enddate><creator>Hanselowski, Andreas</creator><creator>Hanss, Michael</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201412</creationdate><title>Uncertainty and Sensitivity Analysis of Different Models of Brake Squeal</title><author>Hanselowski, Andreas ; Hanss, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1726-1888987325adabede12ecb46cdd1e0eda8fbdb4374e7b3f57c3cc0e0aabf025d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Hanselowski, Andreas</creatorcontrib><creatorcontrib>Hanss, Michael</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Proceedings in applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hanselowski, Andreas</au><au>Hanss, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty and Sensitivity Analysis of Different Models of Brake Squeal</atitle><jtitle>Proceedings in applied mathematics and mechanics</jtitle><addtitle>Proc. Appl. Math. Mech</addtitle><date>2014-12</date><risdate>2014</risdate><volume>14</volume><issue>1</issue><spage>277</spage><epage>278</epage><pages>277-278</pages><issn>1617-7061</issn><eissn>1617-7061</eissn><abstract>In this contribution, the brake‐squeal phenomenon is investigated using the pin‐on‐disc setup. The setup is analyzed numerically using the finite element method. The finite element model is evaluated in the time domain, and the vibration mechanism leading to squeal as well as the limit cycles of the vibration are analyzed. Against the background of the high computational costs, it is evaluated to what extent the Hoffmann‐Gaul minimal model can reproduce the results of the finite element model. Moreover, as brake squeal is very sensitive with respect to parametric uncertainties, the influence of several parametric uncertainties on the limit cycles is analyzed. (© 2014 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/pamm.201410126</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1617-7061 |
ispartof | Proceedings in applied mathematics and mechanics, 2014-12, Vol.14 (1), p.277-278 |
issn | 1617-7061 1617-7061 |
language | eng |
recordid | cdi_crossref_primary_10_1002_pamm_201410126 |
source | Wiley-Blackwell Read & Publish Collection |
title | Uncertainty and Sensitivity Analysis of Different Models of Brake Squeal |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A03%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20and%20Sensitivity%20Analysis%20of%20Different%20Models%20of%20Brake%20Squeal&rft.jtitle=Proceedings%20in%20applied%20mathematics%20and%20mechanics&rft.au=Hanselowski,%20Andreas&rft.date=2014-12&rft.volume=14&rft.issue=1&rft.spage=277&rft.epage=278&rft.pages=277-278&rft.issn=1617-7061&rft.eissn=1617-7061&rft_id=info:doi/10.1002/pamm.201410126&rft_dat=%3Cwiley_cross%3EPAMM201410126%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1726-1888987325adabede12ecb46cdd1e0eda8fbdb4374e7b3f57c3cc0e0aabf025d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |