Loading…

Uncertainty and Sensitivity Analysis of Different Models of Brake Squeal

In this contribution, the brake‐squeal phenomenon is investigated using the pin‐on‐disc setup. The setup is analyzed numerically using the finite element method. The finite element model is evaluated in the time domain, and the vibration mechanism leading to squeal as well as the limit cycles of the...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings in applied mathematics and mechanics 2014-12, Vol.14 (1), p.277-278
Main Authors: Hanselowski, Andreas, Hanss, Michael
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1726-1888987325adabede12ecb46cdd1e0eda8fbdb4374e7b3f57c3cc0e0aabf025d3
cites cdi_FETCH-LOGICAL-c1726-1888987325adabede12ecb46cdd1e0eda8fbdb4374e7b3f57c3cc0e0aabf025d3
container_end_page 278
container_issue 1
container_start_page 277
container_title Proceedings in applied mathematics and mechanics
container_volume 14
creator Hanselowski, Andreas
Hanss, Michael
description In this contribution, the brake‐squeal phenomenon is investigated using the pin‐on‐disc setup. The setup is analyzed numerically using the finite element method. The finite element model is evaluated in the time domain, and the vibration mechanism leading to squeal as well as the limit cycles of the vibration are analyzed. Against the background of the high computational costs, it is evaluated to what extent the Hoffmann‐Gaul minimal model can reproduce the results of the finite element model. Moreover, as brake squeal is very sensitive with respect to parametric uncertainties, the influence of several parametric uncertainties on the limit cycles is analyzed. (© 2014 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)
doi_str_mv 10.1002/pamm.201410126
format article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pamm_201410126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PAMM201410126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1726-1888987325adabede12ecb46cdd1e0eda8fbdb4374e7b3f57c3cc0e0aabf025d3</originalsourceid><addsrcrecordid>eNqFkMFOAjEQhhujiYhePe8LLHa2u-1yBFQwgJogMfHSdNtpUlkWbBd1314QQ7h5mpk__zeHj5BroB2gNLlZq-Wyk1BIgULCT0gLOIhYUA6nR_s5uQjhfdsHzmiLjOaVRl8rV9VNpCoTzbAKrnafbnv3KlU2wYVoZaNbZy16rOpoujJY_mZ9rxYYzT42qMpLcmZVGfDqb7bJ_P7uZTCKJ0_Dh0FvEmsQCY8hz_NuLliSKaMKNAgJ6iLl2hhAikbltjBFykSKomA2E5ppTZEqVViaZIa1SWf_V_tVCB6tXHu3VL6RQOXOg9x5kAcPW6C7B75cic0_bfncm06P2XjPulDj94FVfiG5YCKTr49DSd-ybDzu53LCfgBQP3KH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Uncertainty and Sensitivity Analysis of Different Models of Brake Squeal</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Hanselowski, Andreas ; Hanss, Michael</creator><creatorcontrib>Hanselowski, Andreas ; Hanss, Michael</creatorcontrib><description>In this contribution, the brake‐squeal phenomenon is investigated using the pin‐on‐disc setup. The setup is analyzed numerically using the finite element method. The finite element model is evaluated in the time domain, and the vibration mechanism leading to squeal as well as the limit cycles of the vibration are analyzed. Against the background of the high computational costs, it is evaluated to what extent the Hoffmann‐Gaul minimal model can reproduce the results of the finite element model. Moreover, as brake squeal is very sensitive with respect to parametric uncertainties, the influence of several parametric uncertainties on the limit cycles is analyzed. (© 2014 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><identifier>ISSN: 1617-7061</identifier><identifier>EISSN: 1617-7061</identifier><identifier>DOI: 10.1002/pamm.201410126</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><ispartof>Proceedings in applied mathematics and mechanics, 2014-12, Vol.14 (1), p.277-278</ispartof><rights>Copyright © 2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1726-1888987325adabede12ecb46cdd1e0eda8fbdb4374e7b3f57c3cc0e0aabf025d3</citedby><cites>FETCH-LOGICAL-c1726-1888987325adabede12ecb46cdd1e0eda8fbdb4374e7b3f57c3cc0e0aabf025d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hanselowski, Andreas</creatorcontrib><creatorcontrib>Hanss, Michael</creatorcontrib><title>Uncertainty and Sensitivity Analysis of Different Models of Brake Squeal</title><title>Proceedings in applied mathematics and mechanics</title><addtitle>Proc. Appl. Math. Mech</addtitle><description>In this contribution, the brake‐squeal phenomenon is investigated using the pin‐on‐disc setup. The setup is analyzed numerically using the finite element method. The finite element model is evaluated in the time domain, and the vibration mechanism leading to squeal as well as the limit cycles of the vibration are analyzed. Against the background of the high computational costs, it is evaluated to what extent the Hoffmann‐Gaul minimal model can reproduce the results of the finite element model. Moreover, as brake squeal is very sensitive with respect to parametric uncertainties, the influence of several parametric uncertainties on the limit cycles is analyzed. (© 2014 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><issn>1617-7061</issn><issn>1617-7061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkMFOAjEQhhujiYhePe8LLHa2u-1yBFQwgJogMfHSdNtpUlkWbBd1314QQ7h5mpk__zeHj5BroB2gNLlZq-Wyk1BIgULCT0gLOIhYUA6nR_s5uQjhfdsHzmiLjOaVRl8rV9VNpCoTzbAKrnafbnv3KlU2wYVoZaNbZy16rOpoujJY_mZ9rxYYzT42qMpLcmZVGfDqb7bJ_P7uZTCKJ0_Dh0FvEmsQCY8hz_NuLliSKaMKNAgJ6iLl2hhAikbltjBFykSKomA2E5ppTZEqVViaZIa1SWf_V_tVCB6tXHu3VL6RQOXOg9x5kAcPW6C7B75cic0_bfncm06P2XjPulDj94FVfiG5YCKTr49DSd-ybDzu53LCfgBQP3KH</recordid><startdate>201412</startdate><enddate>201412</enddate><creator>Hanselowski, Andreas</creator><creator>Hanss, Michael</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201412</creationdate><title>Uncertainty and Sensitivity Analysis of Different Models of Brake Squeal</title><author>Hanselowski, Andreas ; Hanss, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1726-1888987325adabede12ecb46cdd1e0eda8fbdb4374e7b3f57c3cc0e0aabf025d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Hanselowski, Andreas</creatorcontrib><creatorcontrib>Hanss, Michael</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Proceedings in applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hanselowski, Andreas</au><au>Hanss, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty and Sensitivity Analysis of Different Models of Brake Squeal</atitle><jtitle>Proceedings in applied mathematics and mechanics</jtitle><addtitle>Proc. Appl. Math. Mech</addtitle><date>2014-12</date><risdate>2014</risdate><volume>14</volume><issue>1</issue><spage>277</spage><epage>278</epage><pages>277-278</pages><issn>1617-7061</issn><eissn>1617-7061</eissn><abstract>In this contribution, the brake‐squeal phenomenon is investigated using the pin‐on‐disc setup. The setup is analyzed numerically using the finite element method. The finite element model is evaluated in the time domain, and the vibration mechanism leading to squeal as well as the limit cycles of the vibration are analyzed. Against the background of the high computational costs, it is evaluated to what extent the Hoffmann‐Gaul minimal model can reproduce the results of the finite element model. Moreover, as brake squeal is very sensitive with respect to parametric uncertainties, the influence of several parametric uncertainties on the limit cycles is analyzed. (© 2014 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/pamm.201410126</doi><tpages>2</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1617-7061
ispartof Proceedings in applied mathematics and mechanics, 2014-12, Vol.14 (1), p.277-278
issn 1617-7061
1617-7061
language eng
recordid cdi_crossref_primary_10_1002_pamm_201410126
source Wiley-Blackwell Read & Publish Collection
title Uncertainty and Sensitivity Analysis of Different Models of Brake Squeal
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A03%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20and%20Sensitivity%20Analysis%20of%20Different%20Models%20of%20Brake%20Squeal&rft.jtitle=Proceedings%20in%20applied%20mathematics%20and%20mechanics&rft.au=Hanselowski,%20Andreas&rft.date=2014-12&rft.volume=14&rft.issue=1&rft.spage=277&rft.epage=278&rft.pages=277-278&rft.issn=1617-7061&rft.eissn=1617-7061&rft_id=info:doi/10.1002/pamm.201410126&rft_dat=%3Cwiley_cross%3EPAMM201410126%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1726-1888987325adabede12ecb46cdd1e0eda8fbdb4374e7b3f57c3cc0e0aabf025d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true