Loading…

On the Computation of Convergence Regions for Sequential Nonlinear Programming Problems

In this work, we formulate and solve the problem of finding the ball of maximum radius around a local minimum of a nonlinear optimization problem, which is invariant with respect to the gradient descent method. This problem arises in the context of solving sequences of nonlinear optimization problem...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings in applied mathematics and mechanics 2021-01, Vol.20 (1), p.n/a
Main Authors: Mykhailiuk, Ivan, Schäfer, Kai, Flaßkamp, Kathrin, Büskens, Christof
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1741-af5a715fe23523c5eaed748cce9abbfb9cab4c4db05205137498229395886ee23
cites cdi_FETCH-LOGICAL-c1741-af5a715fe23523c5eaed748cce9abbfb9cab4c4db05205137498229395886ee23
container_end_page n/a
container_issue 1
container_start_page
container_title Proceedings in applied mathematics and mechanics
container_volume 20
creator Mykhailiuk, Ivan
Schäfer, Kai
Flaßkamp, Kathrin
Büskens, Christof
description In this work, we formulate and solve the problem of finding the ball of maximum radius around a local minimum of a nonlinear optimization problem, which is invariant with respect to the gradient descent method. This problem arises in the context of solving sequences of nonlinear optimization problems, in which one usually strives to converge to qualitatively similar solutions. We illustrate our idea with an example of a nonlinear function of two variables.
doi_str_mv 10.1002/pamm.202000281
format article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pamm_202000281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PAMM202000281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1741-af5a715fe23523c5eaed748cce9abbfb9cab4c4db05205137498229395886ee23</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEqVw5ew_kGA7cRIfq4hHpZZWPMQxctx1CErsYqeg_nscFQE3Tjuzmm9XGoQuKYkpIexqK_s-ZoSRYAp6hCY0o3mUk4we_9Gn6Mz7txChWUIm6GVl8PAKuLT9djfIobUGWx2s-QDXgFGAH6AJW4-1dfgR3ndghlZ2-N6arjUgHV4727jwvDXNqOsOen-OTrTsPFx8zyl6vrl-Ku-ixep2Xs4WkaJ5SiOpucwp18ASzhLFQcImTwulQMi61rVQsk5VuqkJZ4TTJE9FwZhIBC-KDAI1RfHhrnLWewe62rq2l25fUVKNtVRjLdVPLQEQB-Cz7WD_T7paz5bLX_YLANRoTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Computation of Convergence Regions for Sequential Nonlinear Programming Problems</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Mykhailiuk, Ivan ; Schäfer, Kai ; Flaßkamp, Kathrin ; Büskens, Christof</creator><creatorcontrib>Mykhailiuk, Ivan ; Schäfer, Kai ; Flaßkamp, Kathrin ; Büskens, Christof</creatorcontrib><description>In this work, we formulate and solve the problem of finding the ball of maximum radius around a local minimum of a nonlinear optimization problem, which is invariant with respect to the gradient descent method. This problem arises in the context of solving sequences of nonlinear optimization problems, in which one usually strives to converge to qualitatively similar solutions. We illustrate our idea with an example of a nonlinear function of two variables.</description><identifier>ISSN: 1617-7061</identifier><identifier>EISSN: 1617-7061</identifier><identifier>DOI: 10.1002/pamm.202000281</identifier><language>eng</language><publisher>Berlin: Wiley‐VCH GmbH</publisher><ispartof>Proceedings in applied mathematics and mechanics, 2021-01, Vol.20 (1), p.n/a</ispartof><rights>2021 The Authors published by Wiley‐VCH GmbH</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1741-af5a715fe23523c5eaed748cce9abbfb9cab4c4db05205137498229395886ee23</citedby><cites>FETCH-LOGICAL-c1741-af5a715fe23523c5eaed748cce9abbfb9cab4c4db05205137498229395886ee23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Mykhailiuk, Ivan</creatorcontrib><creatorcontrib>Schäfer, Kai</creatorcontrib><creatorcontrib>Flaßkamp, Kathrin</creatorcontrib><creatorcontrib>Büskens, Christof</creatorcontrib><title>On the Computation of Convergence Regions for Sequential Nonlinear Programming Problems</title><title>Proceedings in applied mathematics and mechanics</title><description>In this work, we formulate and solve the problem of finding the ball of maximum radius around a local minimum of a nonlinear optimization problem, which is invariant with respect to the gradient descent method. This problem arises in the context of solving sequences of nonlinear optimization problems, in which one usually strives to converge to qualitatively similar solutions. We illustrate our idea with an example of a nonlinear function of two variables.</description><issn>1617-7061</issn><issn>1617-7061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkEtPwzAQhC0EEqVw5ew_kGA7cRIfq4hHpZZWPMQxctx1CErsYqeg_nscFQE3Tjuzmm9XGoQuKYkpIexqK_s-ZoSRYAp6hCY0o3mUk4we_9Gn6Mz7txChWUIm6GVl8PAKuLT9djfIobUGWx2s-QDXgFGAH6AJW4-1dfgR3ndghlZ2-N6arjUgHV4727jwvDXNqOsOen-OTrTsPFx8zyl6vrl-Ku-ixep2Xs4WkaJ5SiOpucwp18ASzhLFQcImTwulQMi61rVQsk5VuqkJZ4TTJE9FwZhIBC-KDAI1RfHhrnLWewe62rq2l25fUVKNtVRjLdVPLQEQB-Cz7WD_T7paz5bLX_YLANRoTQ</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Mykhailiuk, Ivan</creator><creator>Schäfer, Kai</creator><creator>Flaßkamp, Kathrin</creator><creator>Büskens, Christof</creator><general>Wiley‐VCH GmbH</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202101</creationdate><title>On the Computation of Convergence Regions for Sequential Nonlinear Programming Problems</title><author>Mykhailiuk, Ivan ; Schäfer, Kai ; Flaßkamp, Kathrin ; Büskens, Christof</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1741-af5a715fe23523c5eaed748cce9abbfb9cab4c4db05205137498229395886ee23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Mykhailiuk, Ivan</creatorcontrib><creatorcontrib>Schäfer, Kai</creatorcontrib><creatorcontrib>Flaßkamp, Kathrin</creatorcontrib><creatorcontrib>Büskens, Christof</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>CrossRef</collection><jtitle>Proceedings in applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mykhailiuk, Ivan</au><au>Schäfer, Kai</au><au>Flaßkamp, Kathrin</au><au>Büskens, Christof</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Computation of Convergence Regions for Sequential Nonlinear Programming Problems</atitle><jtitle>Proceedings in applied mathematics and mechanics</jtitle><date>2021-01</date><risdate>2021</risdate><volume>20</volume><issue>1</issue><epage>n/a</epage><issn>1617-7061</issn><eissn>1617-7061</eissn><abstract>In this work, we formulate and solve the problem of finding the ball of maximum radius around a local minimum of a nonlinear optimization problem, which is invariant with respect to the gradient descent method. This problem arises in the context of solving sequences of nonlinear optimization problems, in which one usually strives to converge to qualitatively similar solutions. We illustrate our idea with an example of a nonlinear function of two variables.</abstract><cop>Berlin</cop><pub>Wiley‐VCH GmbH</pub><doi>10.1002/pamm.202000281</doi><tpages>0</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1617-7061
ispartof Proceedings in applied mathematics and mechanics, 2021-01, Vol.20 (1), p.n/a
issn 1617-7061
1617-7061
language eng
recordid cdi_crossref_primary_10_1002_pamm_202000281
source Wiley-Blackwell Read & Publish Collection
title On the Computation of Convergence Regions for Sequential Nonlinear Programming Problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A24%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Computation%20of%20Convergence%20Regions%20for%20Sequential%20Nonlinear%20Programming%20Problems&rft.jtitle=Proceedings%20in%20applied%20mathematics%20and%20mechanics&rft.au=Mykhailiuk,%20Ivan&rft.date=2021-01&rft.volume=20&rft.issue=1&rft.epage=n/a&rft.issn=1617-7061&rft.eissn=1617-7061&rft_id=info:doi/10.1002/pamm.202000281&rft_dat=%3Cwiley_cross%3EPAMM202000281%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1741-af5a715fe23523c5eaed748cce9abbfb9cab4c4db05205137498229395886ee23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true