Loading…
On the Computation of Convergence Regions for Sequential Nonlinear Programming Problems
In this work, we formulate and solve the problem of finding the ball of maximum radius around a local minimum of a nonlinear optimization problem, which is invariant with respect to the gradient descent method. This problem arises in the context of solving sequences of nonlinear optimization problem...
Saved in:
Published in: | Proceedings in applied mathematics and mechanics 2021-01, Vol.20 (1), p.n/a |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c1741-af5a715fe23523c5eaed748cce9abbfb9cab4c4db05205137498229395886ee23 |
---|---|
cites | cdi_FETCH-LOGICAL-c1741-af5a715fe23523c5eaed748cce9abbfb9cab4c4db05205137498229395886ee23 |
container_end_page | n/a |
container_issue | 1 |
container_start_page | |
container_title | Proceedings in applied mathematics and mechanics |
container_volume | 20 |
creator | Mykhailiuk, Ivan Schäfer, Kai Flaßkamp, Kathrin Büskens, Christof |
description | In this work, we formulate and solve the problem of finding the ball of maximum radius around a local minimum of a nonlinear optimization problem, which is invariant with respect to the gradient descent method. This problem arises in the context of solving sequences of nonlinear optimization problems, in which one usually strives to converge to qualitatively similar solutions. We illustrate our idea with an example of a nonlinear function of two variables. |
doi_str_mv | 10.1002/pamm.202000281 |
format | article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pamm_202000281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PAMM202000281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1741-af5a715fe23523c5eaed748cce9abbfb9cab4c4db05205137498229395886ee23</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEqVw5ew_kGA7cRIfq4hHpZZWPMQxctx1CErsYqeg_nscFQE3Tjuzmm9XGoQuKYkpIexqK_s-ZoSRYAp6hCY0o3mUk4we_9Gn6Mz7txChWUIm6GVl8PAKuLT9djfIobUGWx2s-QDXgFGAH6AJW4-1dfgR3ndghlZ2-N6arjUgHV4727jwvDXNqOsOen-OTrTsPFx8zyl6vrl-Ku-ixep2Xs4WkaJ5SiOpucwp18ASzhLFQcImTwulQMi61rVQsk5VuqkJZ4TTJE9FwZhIBC-KDAI1RfHhrnLWewe62rq2l25fUVKNtVRjLdVPLQEQB-Cz7WD_T7paz5bLX_YLANRoTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Computation of Convergence Regions for Sequential Nonlinear Programming Problems</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Mykhailiuk, Ivan ; Schäfer, Kai ; Flaßkamp, Kathrin ; Büskens, Christof</creator><creatorcontrib>Mykhailiuk, Ivan ; Schäfer, Kai ; Flaßkamp, Kathrin ; Büskens, Christof</creatorcontrib><description>In this work, we formulate and solve the problem of finding the ball of maximum radius around a local minimum of a nonlinear optimization problem, which is invariant with respect to the gradient descent method. This problem arises in the context of solving sequences of nonlinear optimization problems, in which one usually strives to converge to qualitatively similar solutions. We illustrate our idea with an example of a nonlinear function of two variables.</description><identifier>ISSN: 1617-7061</identifier><identifier>EISSN: 1617-7061</identifier><identifier>DOI: 10.1002/pamm.202000281</identifier><language>eng</language><publisher>Berlin: Wiley‐VCH GmbH</publisher><ispartof>Proceedings in applied mathematics and mechanics, 2021-01, Vol.20 (1), p.n/a</ispartof><rights>2021 The Authors published by Wiley‐VCH GmbH</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1741-af5a715fe23523c5eaed748cce9abbfb9cab4c4db05205137498229395886ee23</citedby><cites>FETCH-LOGICAL-c1741-af5a715fe23523c5eaed748cce9abbfb9cab4c4db05205137498229395886ee23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Mykhailiuk, Ivan</creatorcontrib><creatorcontrib>Schäfer, Kai</creatorcontrib><creatorcontrib>Flaßkamp, Kathrin</creatorcontrib><creatorcontrib>Büskens, Christof</creatorcontrib><title>On the Computation of Convergence Regions for Sequential Nonlinear Programming Problems</title><title>Proceedings in applied mathematics and mechanics</title><description>In this work, we formulate and solve the problem of finding the ball of maximum radius around a local minimum of a nonlinear optimization problem, which is invariant with respect to the gradient descent method. This problem arises in the context of solving sequences of nonlinear optimization problems, in which one usually strives to converge to qualitatively similar solutions. We illustrate our idea with an example of a nonlinear function of two variables.</description><issn>1617-7061</issn><issn>1617-7061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkEtPwzAQhC0EEqVw5ew_kGA7cRIfq4hHpZZWPMQxctx1CErsYqeg_nscFQE3Tjuzmm9XGoQuKYkpIexqK_s-ZoSRYAp6hCY0o3mUk4we_9Gn6Mz7txChWUIm6GVl8PAKuLT9djfIobUGWx2s-QDXgFGAH6AJW4-1dfgR3ndghlZ2-N6arjUgHV4727jwvDXNqOsOen-OTrTsPFx8zyl6vrl-Ku-ixep2Xs4WkaJ5SiOpucwp18ASzhLFQcImTwulQMi61rVQsk5VuqkJZ4TTJE9FwZhIBC-KDAI1RfHhrnLWewe62rq2l25fUVKNtVRjLdVPLQEQB-Cz7WD_T7paz5bLX_YLANRoTQ</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Mykhailiuk, Ivan</creator><creator>Schäfer, Kai</creator><creator>Flaßkamp, Kathrin</creator><creator>Büskens, Christof</creator><general>Wiley‐VCH GmbH</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202101</creationdate><title>On the Computation of Convergence Regions for Sequential Nonlinear Programming Problems</title><author>Mykhailiuk, Ivan ; Schäfer, Kai ; Flaßkamp, Kathrin ; Büskens, Christof</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1741-af5a715fe23523c5eaed748cce9abbfb9cab4c4db05205137498229395886ee23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Mykhailiuk, Ivan</creatorcontrib><creatorcontrib>Schäfer, Kai</creatorcontrib><creatorcontrib>Flaßkamp, Kathrin</creatorcontrib><creatorcontrib>Büskens, Christof</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>CrossRef</collection><jtitle>Proceedings in applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mykhailiuk, Ivan</au><au>Schäfer, Kai</au><au>Flaßkamp, Kathrin</au><au>Büskens, Christof</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Computation of Convergence Regions for Sequential Nonlinear Programming Problems</atitle><jtitle>Proceedings in applied mathematics and mechanics</jtitle><date>2021-01</date><risdate>2021</risdate><volume>20</volume><issue>1</issue><epage>n/a</epage><issn>1617-7061</issn><eissn>1617-7061</eissn><abstract>In this work, we formulate and solve the problem of finding the ball of maximum radius around a local minimum of a nonlinear optimization problem, which is invariant with respect to the gradient descent method. This problem arises in the context of solving sequences of nonlinear optimization problems, in which one usually strives to converge to qualitatively similar solutions. We illustrate our idea with an example of a nonlinear function of two variables.</abstract><cop>Berlin</cop><pub>Wiley‐VCH GmbH</pub><doi>10.1002/pamm.202000281</doi><tpages>0</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1617-7061 |
ispartof | Proceedings in applied mathematics and mechanics, 2021-01, Vol.20 (1), p.n/a |
issn | 1617-7061 1617-7061 |
language | eng |
recordid | cdi_crossref_primary_10_1002_pamm_202000281 |
source | Wiley-Blackwell Read & Publish Collection |
title | On the Computation of Convergence Regions for Sequential Nonlinear Programming Problems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A24%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Computation%20of%20Convergence%20Regions%20for%20Sequential%20Nonlinear%20Programming%20Problems&rft.jtitle=Proceedings%20in%20applied%20mathematics%20and%20mechanics&rft.au=Mykhailiuk,%20Ivan&rft.date=2021-01&rft.volume=20&rft.issue=1&rft.epage=n/a&rft.issn=1617-7061&rft.eissn=1617-7061&rft_id=info:doi/10.1002/pamm.202000281&rft_dat=%3Cwiley_cross%3EPAMM202000281%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1741-af5a715fe23523c5eaed748cce9abbfb9cab4c4db05205137498229395886ee23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |