Loading…

Triclosan-based antibacterial paper reinforced with nano-montmorillonite: a model nanocomposite for the development of new active packaging

In this study, a suitable method is reported to produce reinforced antibacterial paper packaging using the antimicrobial triclosan (TC) and organically modified montmorillonite (OMMT) as “model” compounds. Direct incorporation of TC at a concentration of 1 wt% and OMMT at concentrations of 1, 4, 7,...

Full description

Saved in:
Bibliographic Details
Published in:Polymers for advanced technologies 2012-05, Vol.23 (5), p.901-908
Main Authors: Soares, N. F. F., Moreira, F. K. V., Fialho, T. L., Melo, N. R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, a suitable method is reported to produce reinforced antibacterial paper packaging using the antimicrobial triclosan (TC) and organically modified montmorillonite (OMMT) as “model” compounds. Direct incorporation of TC at a concentration of 1 wt% and OMMT at concentrations of 1, 4, 7, and 10 wt% into papers was performed via coating process, and the resulting materials were characterized by in vitro antimicrobial assays, thermogravimetric analysis, scanning electron microscopy, mechanical tests, and water vapor transmission rate determinations. It was demonstrated that the presence of 1% TC in the coated papers exhibited inhibitory effects against Staphylococcus aureus and Escherichia coli. It was also pointed out that increases of approximately 30% in the tensile strength of commercial paper are obtained by using the OMMT at a concentration of 1 wt%. Water barrier property and thermal stability of paper were also enhanced because of the coating process and the incorporation of OMMT. The results from this study demonstrate that OMMT has a great potential to be incorporated into coating formulations to obtain antibacterial‐coated papers with improved properties for various packaging applications. Copyright © 2011 John Wiley & Sons, Ltd.
ISSN:1042-7147
1099-1581
DOI:10.1002/pat.1986