Loading…

Thickness evaluation of AlO x barrier layers for encapsulation of flexible PV modules in industrial environments by normal reflectance and machine learning

Flexible photovoltaic (PV) devices, such as those based on Cu (In,Ga)Se 2 (CIGS) and perovskites, use polymeric front sheets for encapsulation that do not provide sufficient protection against the environment. The addition of nanometric Al x O layers by spatial atomic layer deposition (S‐ALD) to the...

Full description

Saved in:
Bibliographic Details
Published in:Progress in photovoltaics 2022-03, Vol.30 (3), p.229-239
Main Authors: Grau‐Luque, Enric, Guc, Maxim, Becerril‐Romero, Ignacio, Izquierdo‐Roca, Víctor, Pérez‐Rodríguez, Alejandro, Bolt, Pieter, Van den Bruele, Fieke, Ruhle, Ulfert
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c728-2e1ec9fb048ec586b955ab27456ba99a4f174167781e21740a59db8fb5ea0c2c3
cites cdi_FETCH-LOGICAL-c728-2e1ec9fb048ec586b955ab27456ba99a4f174167781e21740a59db8fb5ea0c2c3
container_end_page 239
container_issue 3
container_start_page 229
container_title Progress in photovoltaics
container_volume 30
creator Grau‐Luque, Enric
Guc, Maxim
Becerril‐Romero, Ignacio
Izquierdo‐Roca, Víctor
Pérez‐Rodríguez, Alejandro
Bolt, Pieter
Van den Bruele, Fieke
Ruhle, Ulfert
description Flexible photovoltaic (PV) devices, such as those based on Cu (In,Ga)Se 2 (CIGS) and perovskites, use polymeric front sheets for encapsulation that do not provide sufficient protection against the environment. The addition of nanometric Al x O layers by spatial atomic layer deposition (S‐ALD) to these polymeric materials can highly improve environmental protection due to their low water vapor transmission rate and is a suitable solution to be applied in roll‐to‐roll industrial production lines. A precise control of the thickness of the AlO x layers is crucial to ensure an effective water barrier performance. However, current thickness evaluation methods of such nanometric layers are costly and complex to incorporate in industrial environments. In this context, the present work describes and demonstrates a novel characterization methodology based on normal reflectance measurements and either on control parameter‐based calibration curves or machine learning algorithms that enable a precise, low‐cost, and scalable assessment of the thickness of AlO x nanometric layers. In particular, the proposed methodology is applied for precisely determining the thickness AlO x nanolayers deposited on three different substrates relevant for the PV industry: monocrystalline Si, Cu (In,Ga)Se 2 multistack flexible modules, and polyethylene terephthalate (PET) flexible encapsulation foil. The proposed methodology demonstrates a sensitivity
doi_str_mv 10.1002/pip.3478
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_pip_3478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_pip_3478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c728-2e1ec9fb048ec586b955ab27456ba99a4f174167781e21740a59db8fb5ea0c2c3</originalsourceid><addsrcrecordid>eNo9kN1Kw0AQhRdRsFbBR5hLb1J30ySbvSzFPyjUiyLehdnNxK5uNmG3Ke2z-LKmKMLAOQxzhsPH2K3gM8F5et_bfjbPZHnGJoIrlYhcvZ-ffJEmUqn8kl3F-Mm5kKUqJux7s7Xmy1OMQHt0A-5s56FrYOHWcACNIVgK4PBIIULTBSBvsI-D-79sHB2sdgSvb9B29eAogvXj1EPcBYtujOxt6HxLfhdBH8F3oR3Xgcao2aE3BOhraNFsrSdwhMFb_3HNLhp0kW7-dMo2jw-b5XOyWj-9LBerxMi0TFISZFSjeVaSyctCqzxHncosLzQqhVkjZCYKKUtB6Wg55qrWZaNzQm5SM5-yu9-3JnQxjqWqPtgWw7ESvDoxrUam1Ynp_Adzpm47</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thickness evaluation of AlO x barrier layers for encapsulation of flexible PV modules in industrial environments by normal reflectance and machine learning</title><source>Wiley</source><creator>Grau‐Luque, Enric ; Guc, Maxim ; Becerril‐Romero, Ignacio ; Izquierdo‐Roca, Víctor ; Pérez‐Rodríguez, Alejandro ; Bolt, Pieter ; Van den Bruele, Fieke ; Ruhle, Ulfert</creator><creatorcontrib>Grau‐Luque, Enric ; Guc, Maxim ; Becerril‐Romero, Ignacio ; Izquierdo‐Roca, Víctor ; Pérez‐Rodríguez, Alejandro ; Bolt, Pieter ; Van den Bruele, Fieke ; Ruhle, Ulfert</creatorcontrib><description>Flexible photovoltaic (PV) devices, such as those based on Cu (In,Ga)Se 2 (CIGS) and perovskites, use polymeric front sheets for encapsulation that do not provide sufficient protection against the environment. The addition of nanometric Al x O layers by spatial atomic layer deposition (S‐ALD) to these polymeric materials can highly improve environmental protection due to their low water vapor transmission rate and is a suitable solution to be applied in roll‐to‐roll industrial production lines. A precise control of the thickness of the AlO x layers is crucial to ensure an effective water barrier performance. However, current thickness evaluation methods of such nanometric layers are costly and complex to incorporate in industrial environments. In this context, the present work describes and demonstrates a novel characterization methodology based on normal reflectance measurements and either on control parameter‐based calibration curves or machine learning algorithms that enable a precise, low‐cost, and scalable assessment of the thickness of AlO x nanometric layers. In particular, the proposed methodology is applied for precisely determining the thickness AlO x nanolayers deposited on three different substrates relevant for the PV industry: monocrystalline Si, Cu (In,Ga)Se 2 multistack flexible modules, and polyethylene terephthalate (PET) flexible encapsulation foil. The proposed methodology demonstrates a sensitivity &lt;10 nm and acquisition times ≤100 ms which makes it compatible with industrial monitoring applications. Additionally, a specific design for in‐line integration of a normal reflectance system into a roll‐to‐roll production line for thickness control of nanometric layers is defined and proposed.</description><identifier>ISSN: 1062-7995</identifier><identifier>EISSN: 1099-159X</identifier><identifier>DOI: 10.1002/pip.3478</identifier><language>eng</language><ispartof>Progress in photovoltaics, 2022-03, Vol.30 (3), p.229-239</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c728-2e1ec9fb048ec586b955ab27456ba99a4f174167781e21740a59db8fb5ea0c2c3</citedby><cites>FETCH-LOGICAL-c728-2e1ec9fb048ec586b955ab27456ba99a4f174167781e21740a59db8fb5ea0c2c3</cites><orcidid>0000-0002-2072-9566 ; 0000-0002-8188-296X ; 0000-0002-7087-6097 ; 0000-0002-9336-6321 ; 0000-0002-3634-1355 ; 0000-0002-8357-5824 ; 0000-0002-5502-3133</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Grau‐Luque, Enric</creatorcontrib><creatorcontrib>Guc, Maxim</creatorcontrib><creatorcontrib>Becerril‐Romero, Ignacio</creatorcontrib><creatorcontrib>Izquierdo‐Roca, Víctor</creatorcontrib><creatorcontrib>Pérez‐Rodríguez, Alejandro</creatorcontrib><creatorcontrib>Bolt, Pieter</creatorcontrib><creatorcontrib>Van den Bruele, Fieke</creatorcontrib><creatorcontrib>Ruhle, Ulfert</creatorcontrib><title>Thickness evaluation of AlO x barrier layers for encapsulation of flexible PV modules in industrial environments by normal reflectance and machine learning</title><title>Progress in photovoltaics</title><description>Flexible photovoltaic (PV) devices, such as those based on Cu (In,Ga)Se 2 (CIGS) and perovskites, use polymeric front sheets for encapsulation that do not provide sufficient protection against the environment. The addition of nanometric Al x O layers by spatial atomic layer deposition (S‐ALD) to these polymeric materials can highly improve environmental protection due to their low water vapor transmission rate and is a suitable solution to be applied in roll‐to‐roll industrial production lines. A precise control of the thickness of the AlO x layers is crucial to ensure an effective water barrier performance. However, current thickness evaluation methods of such nanometric layers are costly and complex to incorporate in industrial environments. In this context, the present work describes and demonstrates a novel characterization methodology based on normal reflectance measurements and either on control parameter‐based calibration curves or machine learning algorithms that enable a precise, low‐cost, and scalable assessment of the thickness of AlO x nanometric layers. In particular, the proposed methodology is applied for precisely determining the thickness AlO x nanolayers deposited on three different substrates relevant for the PV industry: monocrystalline Si, Cu (In,Ga)Se 2 multistack flexible modules, and polyethylene terephthalate (PET) flexible encapsulation foil. The proposed methodology demonstrates a sensitivity &lt;10 nm and acquisition times ≤100 ms which makes it compatible with industrial monitoring applications. Additionally, a specific design for in‐line integration of a normal reflectance system into a roll‐to‐roll production line for thickness control of nanometric layers is defined and proposed.</description><issn>1062-7995</issn><issn>1099-159X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kN1Kw0AQhRdRsFbBR5hLb1J30ySbvSzFPyjUiyLehdnNxK5uNmG3Ke2z-LKmKMLAOQxzhsPH2K3gM8F5et_bfjbPZHnGJoIrlYhcvZ-ffJEmUqn8kl3F-Mm5kKUqJux7s7Xmy1OMQHt0A-5s56FrYOHWcACNIVgK4PBIIULTBSBvsI-D-79sHB2sdgSvb9B29eAogvXj1EPcBYtujOxt6HxLfhdBH8F3oR3Xgcao2aE3BOhraNFsrSdwhMFb_3HNLhp0kW7-dMo2jw-b5XOyWj-9LBerxMi0TFISZFSjeVaSyctCqzxHncosLzQqhVkjZCYKKUtB6Wg55qrWZaNzQm5SM5-yu9-3JnQxjqWqPtgWw7ESvDoxrUam1Ynp_Adzpm47</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Grau‐Luque, Enric</creator><creator>Guc, Maxim</creator><creator>Becerril‐Romero, Ignacio</creator><creator>Izquierdo‐Roca, Víctor</creator><creator>Pérez‐Rodríguez, Alejandro</creator><creator>Bolt, Pieter</creator><creator>Van den Bruele, Fieke</creator><creator>Ruhle, Ulfert</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2072-9566</orcidid><orcidid>https://orcid.org/0000-0002-8188-296X</orcidid><orcidid>https://orcid.org/0000-0002-7087-6097</orcidid><orcidid>https://orcid.org/0000-0002-9336-6321</orcidid><orcidid>https://orcid.org/0000-0002-3634-1355</orcidid><orcidid>https://orcid.org/0000-0002-8357-5824</orcidid><orcidid>https://orcid.org/0000-0002-5502-3133</orcidid></search><sort><creationdate>202203</creationdate><title>Thickness evaluation of AlO x barrier layers for encapsulation of flexible PV modules in industrial environments by normal reflectance and machine learning</title><author>Grau‐Luque, Enric ; Guc, Maxim ; Becerril‐Romero, Ignacio ; Izquierdo‐Roca, Víctor ; Pérez‐Rodríguez, Alejandro ; Bolt, Pieter ; Van den Bruele, Fieke ; Ruhle, Ulfert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c728-2e1ec9fb048ec586b955ab27456ba99a4f174167781e21740a59db8fb5ea0c2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grau‐Luque, Enric</creatorcontrib><creatorcontrib>Guc, Maxim</creatorcontrib><creatorcontrib>Becerril‐Romero, Ignacio</creatorcontrib><creatorcontrib>Izquierdo‐Roca, Víctor</creatorcontrib><creatorcontrib>Pérez‐Rodríguez, Alejandro</creatorcontrib><creatorcontrib>Bolt, Pieter</creatorcontrib><creatorcontrib>Van den Bruele, Fieke</creatorcontrib><creatorcontrib>Ruhle, Ulfert</creatorcontrib><collection>CrossRef</collection><jtitle>Progress in photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grau‐Luque, Enric</au><au>Guc, Maxim</au><au>Becerril‐Romero, Ignacio</au><au>Izquierdo‐Roca, Víctor</au><au>Pérez‐Rodríguez, Alejandro</au><au>Bolt, Pieter</au><au>Van den Bruele, Fieke</au><au>Ruhle, Ulfert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thickness evaluation of AlO x barrier layers for encapsulation of flexible PV modules in industrial environments by normal reflectance and machine learning</atitle><jtitle>Progress in photovoltaics</jtitle><date>2022-03</date><risdate>2022</risdate><volume>30</volume><issue>3</issue><spage>229</spage><epage>239</epage><pages>229-239</pages><issn>1062-7995</issn><eissn>1099-159X</eissn><abstract>Flexible photovoltaic (PV) devices, such as those based on Cu (In,Ga)Se 2 (CIGS) and perovskites, use polymeric front sheets for encapsulation that do not provide sufficient protection against the environment. The addition of nanometric Al x O layers by spatial atomic layer deposition (S‐ALD) to these polymeric materials can highly improve environmental protection due to their low water vapor transmission rate and is a suitable solution to be applied in roll‐to‐roll industrial production lines. A precise control of the thickness of the AlO x layers is crucial to ensure an effective water barrier performance. However, current thickness evaluation methods of such nanometric layers are costly and complex to incorporate in industrial environments. In this context, the present work describes and demonstrates a novel characterization methodology based on normal reflectance measurements and either on control parameter‐based calibration curves or machine learning algorithms that enable a precise, low‐cost, and scalable assessment of the thickness of AlO x nanometric layers. In particular, the proposed methodology is applied for precisely determining the thickness AlO x nanolayers deposited on three different substrates relevant for the PV industry: monocrystalline Si, Cu (In,Ga)Se 2 multistack flexible modules, and polyethylene terephthalate (PET) flexible encapsulation foil. The proposed methodology demonstrates a sensitivity &lt;10 nm and acquisition times ≤100 ms which makes it compatible with industrial monitoring applications. Additionally, a specific design for in‐line integration of a normal reflectance system into a roll‐to‐roll production line for thickness control of nanometric layers is defined and proposed.</abstract><doi>10.1002/pip.3478</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2072-9566</orcidid><orcidid>https://orcid.org/0000-0002-8188-296X</orcidid><orcidid>https://orcid.org/0000-0002-7087-6097</orcidid><orcidid>https://orcid.org/0000-0002-9336-6321</orcidid><orcidid>https://orcid.org/0000-0002-3634-1355</orcidid><orcidid>https://orcid.org/0000-0002-8357-5824</orcidid><orcidid>https://orcid.org/0000-0002-5502-3133</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1062-7995
ispartof Progress in photovoltaics, 2022-03, Vol.30 (3), p.229-239
issn 1062-7995
1099-159X
language eng
recordid cdi_crossref_primary_10_1002_pip_3478
source Wiley
title Thickness evaluation of AlO x barrier layers for encapsulation of flexible PV modules in industrial environments by normal reflectance and machine learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A07%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thickness%20evaluation%20of%20AlO%20x%20barrier%20layers%20for%20encapsulation%20of%20flexible%20PV%20modules%20in%20industrial%20environments%20by%20normal%20reflectance%20and%20machine%20learning&rft.jtitle=Progress%20in%20photovoltaics&rft.au=Grau%E2%80%90Luque,%20Enric&rft.date=2022-03&rft.volume=30&rft.issue=3&rft.spage=229&rft.epage=239&rft.pages=229-239&rft.issn=1062-7995&rft.eissn=1099-159X&rft_id=info:doi/10.1002/pip.3478&rft_dat=%3Ccrossref%3E10_1002_pip_3478%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c728-2e1ec9fb048ec586b955ab27456ba99a4f174167781e21740a59db8fb5ea0c2c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true