Loading…

Novel cellulose derivatives. III. Thermal analysis of mixed esters with butyric and hexanoic acid

Cellulose derivatives with low degrees of substitution (i.e., DS < 1.5) often fail to reveal glass transition temperatures (Tg) by virtue of their tenacious adherence to moisture, thus preventing systematic analysis of substituent effects (size and DS) on Tg and Tm transitions. On the other hand,...

Full description

Saved in:
Bibliographic Details
Published in:Journal of polymer science. Part B, Polymer physics Polymer physics, 1995-10, Vol.33 (14), p.2045-2054
Main Authors: Glasser, Wolfgang G., Samaranayake, Gamini, Dumay, Michelle, Davé, Vipul
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2866-86e9cc4b7a2ab76756959f171fd9c81102dbfe00711b521b9e5fde477b345fb63
cites cdi_FETCH-LOGICAL-c2866-86e9cc4b7a2ab76756959f171fd9c81102dbfe00711b521b9e5fde477b345fb63
container_end_page 2054
container_issue 14
container_start_page 2045
container_title Journal of polymer science. Part B, Polymer physics
container_volume 33
creator Glasser, Wolfgang G.
Samaranayake, Gamini
Dumay, Michelle
Davé, Vipul
description Cellulose derivatives with low degrees of substitution (i.e., DS < 1.5) often fail to reveal glass transition temperatures (Tg) by virtue of their tenacious adherence to moisture, thus preventing systematic analysis of substituent effects (size and DS) on Tg and Tm transitions. On the other hand, cellulose triesters have Tms that decline with acyl substituent size except when the substituent size becomes very large (i.e., > C6), and they have Tgs within 5–20°C of their Tms. This proximity is unusual for a semicrystalline material, and it interferes with the crystallization process that occurs between Tm and Tg. Triesters of cellulose with mixed acyl substituents (one smaller and one larger) allow not only unambiguous observation of Tgs and Tms but also an adjustable Δ(Tm − Tg) window that depends upon the size and the DS of the larger substituent. The materials studied including cellulose acetate butyrate triesters (DSbu 0.8–2.6), cellulose acetate hexanoate triesters (DShex 0–3.0), and cellulose acetate (DSac 2.44), revealed that only the mixed esters, in which the bulkier acyl group is in the range of DS 0.3–1.0, had a Δ(Tm − Tg) value in excess of 40°C. Although the Tm of cellulose acetate hexanoate declined by ca. 150°C per unit of DShex as DShex rose from 0 to 1, this was only ca. 25°C between DShex of 1 and 3. Frequently observed dual‐melt endotherms were attributed to two separate crystal morphologies. ©1995 John Wiley & Sons, Inc.
doi_str_mv 10.1002/polb.1995.090331406
format article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_polb_1995_090331406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>POLB090331406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2866-86e9cc4b7a2ab76756959f171fd9c81102dbfe00711b521b9e5fde477b345fb63</originalsourceid><addsrcrecordid>eNqNkMtOAyEUhonRxHp5Ajcs3M4IwwDDxsS7TRp1odEdAeaQorTTQO3l7Z2mpnHpipzw_985-RA6o6SkhFQXsy7akirFS6IIY7QmYg8NKFGqIHXT7KMBaRpZiEqIQ3SU8ych_R9XA2SeugVE7CDG79hlwC2ksDDzsIBc4uFwWOLXMaSJidhMTVznkHHn8SSsoMWQ55AyXob5GNvv-ToF16daPIaVmXabwYX2BB14EzOc_r7H6O3-7vXmsRg9PwxvrkaFqxohikaAcq620lTGSiG56O_zVFLfKtdQSqrWeiBEUmp5Ra0C7luopbSs5t4KdozYlutSl3MCr2cpTExaa0r0xpLeWNIbS3pnqW-db1szk52JPpmpC3lXZUI2nNE-drmNLUOE9X_I-uV5dP13T7EFhN7Zagcw6UsLySTX708PmlPCPu5ZrW_ZDxfoijc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Novel cellulose derivatives. III. Thermal analysis of mixed esters with butyric and hexanoic acid</title><source>Wiley Online Library Polymer Backfiles</source><creator>Glasser, Wolfgang G. ; Samaranayake, Gamini ; Dumay, Michelle ; Davé, Vipul</creator><creatorcontrib>Glasser, Wolfgang G. ; Samaranayake, Gamini ; Dumay, Michelle ; Davé, Vipul</creatorcontrib><description>Cellulose derivatives with low degrees of substitution (i.e., DS &lt; 1.5) often fail to reveal glass transition temperatures (Tg) by virtue of their tenacious adherence to moisture, thus preventing systematic analysis of substituent effects (size and DS) on Tg and Tm transitions. On the other hand, cellulose triesters have Tms that decline with acyl substituent size except when the substituent size becomes very large (i.e., &gt; C6), and they have Tgs within 5–20°C of their Tms. This proximity is unusual for a semicrystalline material, and it interferes with the crystallization process that occurs between Tm and Tg. Triesters of cellulose with mixed acyl substituents (one smaller and one larger) allow not only unambiguous observation of Tgs and Tms but also an adjustable Δ(Tm − Tg) window that depends upon the size and the DS of the larger substituent. The materials studied including cellulose acetate butyrate triesters (DSbu 0.8–2.6), cellulose acetate hexanoate triesters (DShex 0–3.0), and cellulose acetate (DSac 2.44), revealed that only the mixed esters, in which the bulkier acyl group is in the range of DS 0.3–1.0, had a Δ(Tm − Tg) value in excess of 40°C. Although the Tm of cellulose acetate hexanoate declined by ca. 150°C per unit of DShex as DShex rose from 0 to 1, this was only ca. 25°C between DShex of 1 and 3. Frequently observed dual‐melt endotherms were attributed to two separate crystal morphologies. ©1995 John Wiley &amp; Sons, Inc.</description><identifier>ISSN: 0887-6266</identifier><identifier>EISSN: 1099-0488</identifier><identifier>DOI: 10.1002/polb.1995.090331406</identifier><identifier>CODEN: JPLPAY</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Inc</publisher><subject>Applied sciences ; butyric acid ; Cellulose and derivatives ; cellulose derivatives ; Exact sciences and technology ; hexanoic acid ; Natural polymers ; Physicochemistry of polymers ; thermal analysis</subject><ispartof>Journal of polymer science. Part B, Polymer physics, 1995-10, Vol.33 (14), p.2045-2054</ispartof><rights>Copyright © 1995 John Wiley &amp; Sons, Inc.</rights><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2866-86e9cc4b7a2ab76756959f171fd9c81102dbfe00711b521b9e5fde477b345fb63</citedby><cites>FETCH-LOGICAL-c2866-86e9cc4b7a2ab76756959f171fd9c81102dbfe00711b521b9e5fde477b345fb63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpolb.1995.090331406$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpolb.1995.090331406$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,50874,50983</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3678531$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Glasser, Wolfgang G.</creatorcontrib><creatorcontrib>Samaranayake, Gamini</creatorcontrib><creatorcontrib>Dumay, Michelle</creatorcontrib><creatorcontrib>Davé, Vipul</creatorcontrib><title>Novel cellulose derivatives. III. Thermal analysis of mixed esters with butyric and hexanoic acid</title><title>Journal of polymer science. Part B, Polymer physics</title><addtitle>J. Polym. Sci. B Polym. Phys</addtitle><description>Cellulose derivatives with low degrees of substitution (i.e., DS &lt; 1.5) often fail to reveal glass transition temperatures (Tg) by virtue of their tenacious adherence to moisture, thus preventing systematic analysis of substituent effects (size and DS) on Tg and Tm transitions. On the other hand, cellulose triesters have Tms that decline with acyl substituent size except when the substituent size becomes very large (i.e., &gt; C6), and they have Tgs within 5–20°C of their Tms. This proximity is unusual for a semicrystalline material, and it interferes with the crystallization process that occurs between Tm and Tg. Triesters of cellulose with mixed acyl substituents (one smaller and one larger) allow not only unambiguous observation of Tgs and Tms but also an adjustable Δ(Tm − Tg) window that depends upon the size and the DS of the larger substituent. The materials studied including cellulose acetate butyrate triesters (DSbu 0.8–2.6), cellulose acetate hexanoate triesters (DShex 0–3.0), and cellulose acetate (DSac 2.44), revealed that only the mixed esters, in which the bulkier acyl group is in the range of DS 0.3–1.0, had a Δ(Tm − Tg) value in excess of 40°C. Although the Tm of cellulose acetate hexanoate declined by ca. 150°C per unit of DShex as DShex rose from 0 to 1, this was only ca. 25°C between DShex of 1 and 3. Frequently observed dual‐melt endotherms were attributed to two separate crystal morphologies. ©1995 John Wiley &amp; Sons, Inc.</description><subject>Applied sciences</subject><subject>butyric acid</subject><subject>Cellulose and derivatives</subject><subject>cellulose derivatives</subject><subject>Exact sciences and technology</subject><subject>hexanoic acid</subject><subject>Natural polymers</subject><subject>Physicochemistry of polymers</subject><subject>thermal analysis</subject><issn>0887-6266</issn><issn>1099-0488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNqNkMtOAyEUhonRxHp5Ajcs3M4IwwDDxsS7TRp1odEdAeaQorTTQO3l7Z2mpnHpipzw_985-RA6o6SkhFQXsy7akirFS6IIY7QmYg8NKFGqIHXT7KMBaRpZiEqIQ3SU8ych_R9XA2SeugVE7CDG79hlwC2ksDDzsIBc4uFwWOLXMaSJidhMTVznkHHn8SSsoMWQ55AyXob5GNvv-ToF16daPIaVmXabwYX2BB14EzOc_r7H6O3-7vXmsRg9PwxvrkaFqxohikaAcq620lTGSiG56O_zVFLfKtdQSqrWeiBEUmp5Ra0C7luopbSs5t4KdozYlutSl3MCr2cpTExaa0r0xpLeWNIbS3pnqW-db1szk52JPpmpC3lXZUI2nNE-drmNLUOE9X_I-uV5dP13T7EFhN7Zagcw6UsLySTX708PmlPCPu5ZrW_ZDxfoijc</recordid><startdate>199510</startdate><enddate>199510</enddate><creator>Glasser, Wolfgang G.</creator><creator>Samaranayake, Gamini</creator><creator>Dumay, Michelle</creator><creator>Davé, Vipul</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199510</creationdate><title>Novel cellulose derivatives. III. Thermal analysis of mixed esters with butyric and hexanoic acid</title><author>Glasser, Wolfgang G. ; Samaranayake, Gamini ; Dumay, Michelle ; Davé, Vipul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2866-86e9cc4b7a2ab76756959f171fd9c81102dbfe00711b521b9e5fde477b345fb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Applied sciences</topic><topic>butyric acid</topic><topic>Cellulose and derivatives</topic><topic>cellulose derivatives</topic><topic>Exact sciences and technology</topic><topic>hexanoic acid</topic><topic>Natural polymers</topic><topic>Physicochemistry of polymers</topic><topic>thermal analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glasser, Wolfgang G.</creatorcontrib><creatorcontrib>Samaranayake, Gamini</creatorcontrib><creatorcontrib>Dumay, Michelle</creatorcontrib><creatorcontrib>Davé, Vipul</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of polymer science. Part B, Polymer physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Glasser, Wolfgang G.</au><au>Samaranayake, Gamini</au><au>Dumay, Michelle</au><au>Davé, Vipul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel cellulose derivatives. III. Thermal analysis of mixed esters with butyric and hexanoic acid</atitle><jtitle>Journal of polymer science. Part B, Polymer physics</jtitle><addtitle>J. Polym. Sci. B Polym. Phys</addtitle><date>1995-10</date><risdate>1995</risdate><volume>33</volume><issue>14</issue><spage>2045</spage><epage>2054</epage><pages>2045-2054</pages><issn>0887-6266</issn><eissn>1099-0488</eissn><coden>JPLPAY</coden><abstract>Cellulose derivatives with low degrees of substitution (i.e., DS &lt; 1.5) often fail to reveal glass transition temperatures (Tg) by virtue of their tenacious adherence to moisture, thus preventing systematic analysis of substituent effects (size and DS) on Tg and Tm transitions. On the other hand, cellulose triesters have Tms that decline with acyl substituent size except when the substituent size becomes very large (i.e., &gt; C6), and they have Tgs within 5–20°C of their Tms. This proximity is unusual for a semicrystalline material, and it interferes with the crystallization process that occurs between Tm and Tg. Triesters of cellulose with mixed acyl substituents (one smaller and one larger) allow not only unambiguous observation of Tgs and Tms but also an adjustable Δ(Tm − Tg) window that depends upon the size and the DS of the larger substituent. The materials studied including cellulose acetate butyrate triesters (DSbu 0.8–2.6), cellulose acetate hexanoate triesters (DShex 0–3.0), and cellulose acetate (DSac 2.44), revealed that only the mixed esters, in which the bulkier acyl group is in the range of DS 0.3–1.0, had a Δ(Tm − Tg) value in excess of 40°C. Although the Tm of cellulose acetate hexanoate declined by ca. 150°C per unit of DShex as DShex rose from 0 to 1, this was only ca. 25°C between DShex of 1 and 3. Frequently observed dual‐melt endotherms were attributed to two separate crystal morphologies. ©1995 John Wiley &amp; Sons, Inc.</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/polb.1995.090331406</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0887-6266
ispartof Journal of polymer science. Part B, Polymer physics, 1995-10, Vol.33 (14), p.2045-2054
issn 0887-6266
1099-0488
language eng
recordid cdi_crossref_primary_10_1002_polb_1995_090331406
source Wiley Online Library Polymer Backfiles
subjects Applied sciences
butyric acid
Cellulose and derivatives
cellulose derivatives
Exact sciences and technology
hexanoic acid
Natural polymers
Physicochemistry of polymers
thermal analysis
title Novel cellulose derivatives. III. Thermal analysis of mixed esters with butyric and hexanoic acid
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A03%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20cellulose%20derivatives.%20III.%20Thermal%20analysis%20of%20mixed%20esters%20with%20butyric%20and%20hexanoic%20acid&rft.jtitle=Journal%20of%20polymer%20science.%20Part%20B,%20Polymer%20physics&rft.au=Glasser,%20Wolfgang%20G.&rft.date=1995-10&rft.volume=33&rft.issue=14&rft.spage=2045&rft.epage=2054&rft.pages=2045-2054&rft.issn=0887-6266&rft.eissn=1099-0488&rft.coden=JPLPAY&rft_id=info:doi/10.1002/polb.1995.090331406&rft_dat=%3Cwiley_cross%3EPOLB090331406%3C/wiley_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2866-86e9cc4b7a2ab76756959f171fd9c81102dbfe00711b521b9e5fde477b345fb63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true