Loading…

Synthesis and gas barrier characterization of poly(ethylene isophthalate)

Poly(ethylene isophthalate) (PEI) was synthesized for this research with essentially a condensation polymerization of isophthalic acid and ethylene glycol catalyzed by zinc acetate and antimony trioxide. Several samples were obtained, and their characteristics were observed and compared with poly(et...

Full description

Saved in:
Bibliographic Details
Published in:Journal of polymer science. Part B, Polymer physics Polymer physics, 2004-12, Vol.42 (23), p.4247-4254
Main Authors: Kotek, Richard, Pang, Kyeong, Schmidt, Ben, Tonelli, Alan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Poly(ethylene isophthalate) (PEI) was synthesized for this research with essentially a condensation polymerization of isophthalic acid and ethylene glycol catalyzed by zinc acetate and antimony trioxide. Several samples were obtained, and their characteristics were observed and compared with poly(ethylene terephthalate) (PET). The synthesized PEI samples were chemically identified by 1H NMR. Thermal analysis with differential scanning calorimetry (DSC) yielded results that indicate the samples were primarily amorphous, with a glass‐transition temperature of 55–60 °C. Molecular weights of these PEI samples were also obtained through intrinsic viscosity measurements (Mark–Houwink equation). Molecular weights varied with conditions of the polymerization, and the highest molecular weight achieved was 21,000 g/mol. Finally, the diffusion coefficient, solubility, and permeability of CO2 gas in PEI were measured and found to be substantially lower than in PET, as anticipated from their isomeric chemical structures. This is because in PET the phenyl rings are substituted in the para (1,4) positions, which allows for their facile flipping, effectively permitting gases to pass through. However, the meta‐substituted phenyl rings in PEI do not permit such ring flipping, and thus PEI may be more suitable for barrier applications. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4247–4254, 2004
ISSN:0887-6266
1099-0488
DOI:10.1002/polb.20284