Loading…

Characterization of Synthetic-Coal Char Particles using fractal dimension analysis

The development and change of surface ruggedness in chars was studied at conditions typical in a pulverized coal furnace. The fractal dimension, a measure of surface ruggedness, of chars was measured using physisorption techniques. By adjusting the temperature encountered (1173 to 1773 K) and reside...

Full description

Saved in:
Bibliographic Details
Published in:Particle & particle systems characterization 1993-12, Vol.10 (6), p.313-320
Main Authors: Ludlow, Douglas K., Vosen, Wendy M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The development and change of surface ruggedness in chars was studied at conditions typical in a pulverized coal furnace. The fractal dimension, a measure of surface ruggedness, of chars was measured using physisorption techniques. By adjusting the temperature encountered (1173 to 1773 K) and residence time (0.1 to 1.5 s) of the synthetic coal (sized to 46–106 μm diameter), chars at different stages of combustion were prepared in a laminar flow (drop‐tube) furnace. The particles were quickly cooled and quenched in an inert atmosphere. The samples were examined using a scanning electron microprobe, and their fractal dimensions were determined using gas physisorption. The adsorption data were used to test if the char surface was fractal on a molecular scale, to determine the fractal dimension, and to quantify changes in the fractal dimension during combustion. The fractal dimension of the unburned synthetic coal was approximately 2. The fractal dimension increased as high as 2.85 as the carbon matrix burned away and exposed mineral moieties. However, as combustion continued the carbon burned completely away leaving a mineral fly ash particle with a fractal dimension as low as 2.47.
ISSN:0934-0866
1521-4117
DOI:10.1002/ppsc.19930100605