Loading…

Determining the Vapor Pressures of Diacetone Diperoxide (DADP) and Hexamethylene Triperoxide Diamine (HMTD)

The vapor signature of diacetone diperoxide (DADP) and hexamethylene triperoxide diamine (HMTD) were examined by a gas chromatography (GC) headspace technique over the range of 15 to 55 °C. Parallel experiments were conducted to redetermine the vapor pressures of 2,4,6‐trinitrotoluene (TNT) and tria...

Full description

Saved in:
Bibliographic Details
Published in:Propellants, explosives, pyrotechnics explosives, pyrotechnics, 2009-12, Vol.34 (6), p.539-543
Main Authors: Oxley, Jimmie C., Smith, James L., Luo, Wei, Brady, Joseph
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The vapor signature of diacetone diperoxide (DADP) and hexamethylene triperoxide diamine (HMTD) were examined by a gas chromatography (GC) headspace technique over the range of 15 to 55 °C. Parallel experiments were conducted to redetermine the vapor pressures of 2,4,6‐trinitrotoluene (TNT) and triacetone triperoxide (TATP). The TNT and TATP vapor pressures were in agreement with the previously reported results. Vapor pressure of DADP was determined to be 17.7 Pa at 25 °C, which is approximately 2.6 times higher than TATP at the same temperature. The Clapeyron equation, relating vapor pressure and temperature, was LnP (Pa)=35.9−9845.1/T (K) for DADP. Heat of sublimation, calculated from the slope of the line for the Clapeyron equation, was 81.9 kJ mole−1. HMTD vapor pressure was not determined due to reduced thermal stability resulting in vapor phase decomposition products.
ISSN:0721-3115
1521-4087
DOI:10.1002/prep.200800073