Loading…

Assessing the risk of resistance in Pseudoperonospora cubensis to the fungicide flumorph in vitro

BACKGROUND: The oomycete fungicide flumorph is a recently introduced carboxylic acid amide (CAA) fungicide. In order to evaluate the risk of developing field resistance to flumorph, the authors compared it with dimethomorph and azoxystrobin with respect to the ease of obtaining resistant isolates to...

Full description

Saved in:
Bibliographic Details
Published in:Pest management science 2008-03, Vol.64 (3), p.255-261
Main Authors: Zhu, Shusheng, Liu, Pengfei, Liu, Xili, Li, Jianqiang, Yuan, Shankui, Si, Naiguo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:BACKGROUND: The oomycete fungicide flumorph is a recently introduced carboxylic acid amide (CAA) fungicide. In order to evaluate the risk of developing field resistance to flumorph, the authors compared it with dimethomorph and azoxystrobin with respect to the ease of obtaining resistant isolates to these fungicides, the level of resistance and their fitness in the laboratory.RESULTS: Mutants with a high level of resistance to azoxystrobin were isolated readily by adaptation and UV irradiation, and their fitness was as good as that of the parent isolates. Attempts to generate mutants of Pseudoperonospora cubensis (Burk. & MA Curtis) Rostovsev resistant to flumorph and dimethomorph by sporangia adaptation on fungicide-treated leaves were unsuccessful. However, moderately resistant mutants were isolated using UV mutagenesis, but their resistance level [maximum resistance factor (MRF) < 100] was much lower than that of the azoxystrobin-resistant mutant (MRF = 733). With the exception of stability of resistance, all mutants showed low pathogenicity and sporulation compared with wild-type isolates and azoxystrobin-resistant mutants. There is cross-resistance between flumorph and dimethomorph, suggesting that they have the same resistance mechanism.CONCLUSION: The above results suggest that the resistance risk of flumorph may be similar to that of dimethomorph but lower than that of azoxystrobin and can be classified as moderate. Thus, it can be managed by appropriate product use strategies. Copyright © 2007 Society of Chemical Industry
ISSN:1526-498X
1526-4998
DOI:10.1002/ps.1515